Mathematics A (1387)
June 2003

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.
Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information please call our Customer Response Centre on 0870240 9800, or visit our website at www.edexcel.org.uk.

June 2003
Publications Code UG014129
All the material in this publication is copyright
© London Qualifications Ltd 2003

CONTENTS

Notes on Marking Principles 2
Paper 5501 4
Paper 5502 11
Paper 5503 17
Paper 5504 24
Paper 5505 32
Paper 5506 40

NOTES ON MARKING PRINCIPLES

NOTES ON MARKING PRINCIPLES

1 Three types of mark are available

M marks - awarded for correct working seen or implied.
A marks - conditional accuracy marks which are awarded for accurate working following the award of M marks.
B marks - unconditional accuracy marks (independent of M).

2 Abbreviations

cao - correct answer only.
ft - follow through.
$\sqrt{ }$ - Denotes a "follow through" answer.
SC - special case.
isw - ignore subsequent working.
oe - or equivalent (and appropriate).
NB : a candidate cannot benefit from both isw and ft .

3 If no working shown, then
correct answers normally score full marks
incorrect (even though nearly correct) answers score no marks.

4 Marking instructions

Misread loses A marks (and sometimes B marks) on that part but ft can be allowed on subsequent parts. M marks can still be earned. If in doubt contact your team leader. If there is a wrong answer in the answer space DO CHECK the working in the body of the script.

- If it is clear from working that the "correct" answer has been obtained from incorrect working, award no marks. If in doubt contact your team leader.
- If there is a wrong answer in the answer space DO CHECK the working in the body of the script.
- If it is clear from working that the "correct" answer has been obtained from incorrect working, award no marks. If in doubt contact your team leader.

5 Style of marking

Answer correct: tick and write part mark in margin NEXT TO BRACKETED MARK. Answer incorrect: cross, but show M, A or B marks if any earned in body of script and transfer the total of these to the margin next to the bracket mark.
Total for each double page at bottom right page (except for back if used), FINAL TOTAL IN RELEVANT BOX ON FRONT COVER.
Nought in margin for fully incorrect question or page AND FOR NO ATTEMPT.
Where no attempt has been made a line should be put in the answer space and zero in the margin next to the bracketed mark
CHOICE OF METHOD - No marks unless one answer is in answer space - then mark that.
CROSSED OUT WORK - if not replaced this should be marked (if legible).
There must always be a mark next to bracketed mark in the margin/

6 Follow Through Marks

Follow throughs are guided by two principles:
(a) Follow throughs which involve a single stage calculation can be awarded without working since you can check the answer yourself, but if ambiguous, do not award.
(b) Follow throughs which involve more than one stage of calculation can only be awarded on sight of the relevant working, even if it appears obvious that there is only one way you could get the answer given.

7 Probability

Probability answers must be given as fractions, percentages or decimals. If a candidate gives a decimal equivalent to a probability, this should be written to at least two decimal places (unless tenths).
Incorrect notation should lose the accuracy marks, but be awarded any implied method marks.

8 Linear Equations

Full marks can be gained if the solution alone is given on the answer line, or otherwise unambiguously indicated in working (without contradiction elsewhere). Where the correct solution only is shown substituted, but not identified as the solution, the accuracy mark is lost but any method marks can be awarded.

9 Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded in another.

Paper 5501				
No	Working	Answer	Mark	Notes
(a) (b) (c) (d)		46 3.4 Arrow at 430 Arrow at 3.7	$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	B1 cao B1 oe B1 allow \pm half graduation B1 allow \pm half graduation Accept indications other than arrows as long as they are clear
2		$\begin{aligned} & \hline 1.60 \\ & 2.05 \end{aligned}$	2	B1) Condone B1) reversal
3 (b)	$\begin{equation*} \frac{18}{24} \text { or } \frac{9}{12} \text { or } \frac{6}{8} \tag{a} \end{equation*}$	$\frac{3}{4}$ 16 squares shaded	2 1	B2 for $\frac{3}{4}$ cao (B1 for $\frac{18}{24}$ or $\frac{9}{12}$ or $\frac{6}{8}$) SC B1 for $\frac{1}{4}$ only B1 cao
4 (a) (b) (c)		line midpoint rectangle	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	B1 within overlay tolerance B1 within overlay tolerance ft from (a) $\pm 0.2 \mathrm{~cm}$ B1 for rectangle $6 \mathrm{~cm} \pm 0.2 \mathrm{~cm}$ by $4 \mathrm{~cm} \pm 0.2 \mathrm{~cm}$
5		kilograms, kg litre, l or cubic metres, m^{3} inches, in	3	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$
6 (b) (c)(i) (ii)		parallel lines marked right angle marked acute reflex	$\begin{align*} & \hline 1 \tag{a}\\ & 1 \\ & 1 \\ & 1 \end{align*}$	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$

Paper 5501				
No	Working	Answer	Mark	Notes
 7 (i) (ii) (iii) (i)(i)		sphere cylinder pyramid	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$	B1 B1 Accept circular prism B1 Condone omission of "triangular" Accept tetrahedron
$8 \quad$ (a)(i) (b) (c)		40 50 5 complete symbols\square and \square oe inc \square	$\begin{align*} & 2 \\ & 1 \tag{ii}\\ & 1 \end{align*}$	B1 cao B1 cao B1 cao B1
$9 \quad$ (i) (ii) (iii) (iv)		$\begin{aligned} & 9,37,56,59,75 \\ & 0.067,0.56,0.6,0.605,0.65 \\ & -10,-6,-4,2,5 \\ & \frac{2}{5}, \frac{1}{2}, \frac{2}{3}, \frac{3}{4} \end{aligned}$	5	B1 cao B1 cao Ignore trailing zeros B1 cao B2 for all 4 correct (B1 for any 3 in correct order) SC B1 for all 4 in reverse order (applies to(iv) only)
(b) (c) (d)		Plotting (4, 24) 60 $m=6 n$	1 $\begin{aligned} & 1 \\ & 1 \\ & 2 \end{aligned}$	B1 B1 ft from their matchsticks B1 cao B2 for $m=6 n$ oe (B1 for $6 n$ oe or $m=$ multiple of n except $m=n$)
11 (i) (ii) (iii) (iv)		$\begin{aligned} & 6,12 \\ & 4,16 \\ & 3,4,6 \text { or } 3,4,6,12 \\ & 8,27 \\ & \hline \end{aligned}$	4	B1 cao B1 cao B1 Condone omission of 12 B1 cao

Paper 5501

No	Working	Answer	Mark	Notes
12		2.43	4	B1 for 36 or 0.36 B1 for 96 or 0.96 B1 for 125 or 1.25 If none of first 3 B 1 s awarded then SC B1 for four 24 s and five 25 s seen OR 4×24 and 5×25 seen B1 for 2.43 cao
$13 \quad \text { (a)(i) }$ (b)		Edinburgh and Plymouth $\begin{equation*} 12 \tag{ii} \end{equation*}$ Cardiff and Belfast London and Plymouth	3 2	B1 for Edinburgh or -7 B1 for Plymouth or 5 B1 ft from (i) if one positive and one negative B1 for Cardiff and Belfast OR -6 and -4 B1 for London and Plymouth OR 3 and 5
14		$\begin{aligned} & \hline 5 \\ & 9 \\ & 8 \end{aligned}$	3	B1 cao B1 cao B1 cao
15 (a) (b)	$2 \times 2 \times 2$	8	2 2	r x 2 0 B2 1 0 B1 1 1 B1 2 1 B1 M1 for $2 \times 2 \times 2$ A1 for 8 cao
16 (a) (b) (c)	$\begin{aligned} & 2 \times 29=58 \\ & 5 \times 30=150 \\ & 2 \times 31=62 \\ & 1 \times 32=32 \\ & \frac{302}{10}=30.2 \end{aligned}$	$\begin{array}{\|l\|} \hline 30 \\ 3 \\ 30.2 \end{array}$	$\begin{aligned} & 1 \\ & 1 \\ & 3 \end{aligned}$	B1 cao B1 cao M1 for freq \times no pins M1 (dep on 1st M1) for totalling and $\div 10$ A1 for 30.2 cao

Paper 5501

No	Working	Answer	Mark	Notes
17		7 5 52 5 13 33 523 	3	B3 all correct (B2 for 4, 5 or 6 correct B1 for 2 or 3 correct)
18 (a)(i) (ii) (iii) (iv) (b)		$\begin{aligned} & 4 c \\ & p^{4} \\ & 8 g \\ & 10 p r \text { OR } 10 r p \\ & 10 y-15 \end{aligned}$	4 1	B1 oe B1 cao B1 oe B1 B1 cao Accept $10 y+-15$
19		$\frac{2}{3}$	3	M1 for 3 rows (9 squares) shaded M1 for 2 columns (10 squares) shaded A1 for $\frac{2}{3}$
	$\begin{aligned} & \frac{3}{5}=\frac{9}{15} \\ & \frac{2}{3}=\frac{10}{15} \end{aligned}$	$\frac{2}{3}$	3	$\begin{aligned} & \text { M1 for } \frac{3}{5}=\frac{9}{15} \\ & \text { M1 for } \frac{2}{3}=\frac{10}{15} \\ & \text { A1 for } \frac{2}{3} \end{aligned}$
	$\begin{aligned} & \frac{3}{5}=0.6 \\ & \frac{2}{3}=0.66 \text { or } 0.67 \text { or better } \end{aligned}$	$\frac{2}{3}$	3	M1 for $\frac{3}{5}=0.6 \quad$) Accept M1 for $\frac{2}{3}=0.66$ or 0.67 or better) percentages A1 for $\frac{2}{3}$

Paper 5501

\begin{tabular}{|c|c|c|c|c|}
\hline No \& Working \& Answer \& Mark \& Notes \\
\hline \begin{tabular}{l}
\[
20 \quad \text { (a) }
\] \\
(b)
\end{tabular} \& \& \[
458.40
\]
\[
14.50
\] \& 3

3 \& | M1 for complete correct method (condone one computational error) |
| :--- |
| A2 for 458.40 cao |
| (A1 for digits 4584 OR ft if M1 awarded) |
| M1 for 1 as first digit in answer and remainder 21 M1 (dep) 4 as second digit in answer A1 for 14.50 (Accept 14.5) |

\hline | 21 (a) |
| :--- |
| (b) | \& \& \[

$$
\begin{aligned}
& 12 x \\
& 12 x+10 y
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1 \\
& 2
\end{aligned}
$$

\] \& | B1 oe |
| :--- |
| B2 oe ft from (a) |
| (B1 $12 x+$ multiple of y or $10 y$ seen) |
| SC B1 for $x=12 x+10 y$ OR $y=12 x+10 y$ |

\hline
\end{tabular}

Paper 5501

No	Working	Answer	Mark	Notes
22	$\begin{aligned} & \frac{1}{3}+\frac{1}{4}=\frac{4}{12}+\frac{3}{12}=\frac{7}{12} \\ & 1-\frac{7}{12}=\frac{5}{12} \end{aligned}$	$\frac{5}{12}$	3	M1 for $\frac{4}{12}$ and $\frac{3}{12}$ oe A2 for $\frac{5}{12}$ oe (A1 for $\frac{7}{12}$) B1 for $1-"\left(\frac{1}{3}+\frac{1}{4}\right)$ "' correctly evaluated
	$\begin{aligned} & 1-\frac{1}{3}=\frac{2}{3}, 1-\frac{1}{4}=\frac{3}{4} \\ & \frac{8}{12}-\frac{3}{12}=\frac{5}{12} \text { or } \frac{9}{12}-\frac{4}{12}=\frac{5}{12} \end{aligned}$	$\frac{5}{12}$	3	B1 for $\frac{2}{3}$ or $\frac{3}{4}$ seen M1 for $\frac{8}{12}-\frac{3}{12}=\frac{5}{12}$ or $\frac{9}{12}-\frac{4}{12}=\frac{5}{12}$ A1 for $\frac{5}{12}$ oe
		$\frac{5}{12}$	3	M1 for 0.25 and 0.33 or better A1 for 0.58 or better A1 for $0.41 \dot{6}$ or recurring
23 (a) (b)(i) (ii)	$180-(54+54)$	54 72 Reason	$\begin{aligned} & 1 \\ & 3 \end{aligned}$	B1 cao M1 for $180-(54+54)$ A1 ft from (a) if $x<90$ B1 for mentioning isosceles and equal or base angles or equal sides and equal or base angles

Paper 5501				
No	Working	Answer	Mark	Notes
24 (a) (b)		Bryani 64	2 1	M1 for 4×9 or $4 \times 3 \times 3$ or $4 \times x \times x$ or square x first or square 3 first A1 SC 4×3^{2} with Bryani scores B2 B1 cao
$25 \quad \text { (a) }$ (b)		dotted line may be solid	3 2	B2 for rectangle base 3 squares and height 4 squares (B1 for rectangle with one correct dimension) B1 for horizontal line 1 cm from top) SC B2 for completely correct elevation on its side B2 for perspective drawing showing slant face and cutout B1 for perspective drawing with either slant face cutout omitted
26 (a) (b)	20×2 or $\frac{20}{30} \times 60$ or $20 \div \frac{1}{2}$ $\frac{20}{60}$ or $\frac{1}{3}$ or 20 minutes	40 line from $(45,20)$ to $(65,0)$	2 2	M1 for 20×2 or $\frac{20}{30} \times 60$ or $20 \div \frac{1}{2}$ A1 cao M1 for $\frac{20}{60}$ or $\frac{1}{3}$ or 20 minutes seen A1 for correct line SC If M0, B1 for line from $(45,20)$ to $(t, 0)$ where $t>45$ or B 1 for a line of the correct gradient.

Paper 5502				
No	Working	Answer	Mark	Notes
(b) (c)	20 in 100 oe	$\begin{gather*} \hline \frac{7}{100} \tag{a}\\ 0.18 \\ 40 \end{gather*}$	$\begin{aligned} & 1 \\ & 1 \\ & 2 \end{aligned}$	B1 cao accept 0.07 B1 cao M1 for sight of 20 in 100 or 20×2 A1 cao
2 (a) (b) (c)		6 cm At centre Circle drawn	2	B1 for 6 ± 0.2 or 60 ± 2 B 1 indep for cm or mm consistent with $1^{\text {st }} \mathrm{B} 1$ B1 within overlay B1 all within overlay
3		See diagram	3	B3 all correct - see separate sheet (B2 for 3 correct B1 for 2 correct)
4 (a) (b) (c) (d)(i) (ii)		$\begin{gathered} \hline \frac{1}{4} \text { oe } \\ 0.75 \\ 75 \% \\ 9 \\ 15-16 \end{gathered}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 2 \end{aligned}$	B1 cao B1 cao B1 cao B1 accept answer in range 9-9.2 B1 accept answers in range 15-16
5 (a) (b) (c)		$9: 30$ 2 hrs 45 min 17	1 2 1	B1 cao B2 for 2 hr 45 min or $2 \frac{3}{4} \mathrm{hr}$ or 165 minutes B1 2:45 or 2.45 or 165 or $45 \mathrm{~min}+1 \mathrm{hr}+1 \mathrm{hr}$ oe B1 cao
6 (a) (b)	$\begin{aligned} & 96 \times 4 \\ & 3 \times 96+40=328 \end{aligned}$	3.84 (0). 56	2 2	M1 for 96×4 or digits 384 A1 cao M1 for $3 \times 96+40$ or digits 328 or digits 56 A1 cao accept 56p

Paper 5502				
No	Working	Answer	Mark	Notes
7 (a) (b)		$\begin{aligned} & \hline 54000 \\ & 50000 \end{aligned}$	1	B1 cao accept 54 thousand B1 (accept ten thousand or 10000) oe
		14 6 Correct reflection	2	B1 cao B1 cao B2 fully correct (B1 correct reflection in a line parallel to the mirror line or condoning 1 block error in shape or position of shape)
(b) (c) (d) (e)	$3+5+4+2$	Missing horiz label 1 (and 6) missing on vertical scale Correct graph $\begin{gathered} \text { Blue } \\ 14 \\ \frac{3}{14} \\ \hline \end{gathered}$	2 $\begin{aligned} & 1 \\ & 1 \end{aligned}$	B1 B1 B1 for bar up to 4 for yellow B1 for bar up to 2 for green B1 cao B1 ft from (b) B1 ft on ' 14 '
10	Barry (8) because you double Kath (7) because you add, 1,2,3		2	$\begin{aligned} & \hline \text { B1 oe } \\ & \text { B1 oe } \\ & \text { SC: B1 for correct rules only } \end{aligned}$
$\begin{array}{ll} \hline 11 & \text { (a) } \\ & \text { (b) } \end{array}$ (c)		$\begin{gathered} 2 n \\ 2 n+15 \\ 20 \mathrm{q} \end{gathered}$	1	$\begin{aligned} & \text { B1 for } 2 n \text { or } n+n \text { OR } 2 \times n \text { OR } n \times 2 \text { OR } n 2 \\ & \text { B1 for " } 2 n \text { " }+15 \text { oe } \\ & \text { B1 cao } \end{aligned}$
12 (a) (b)	$1+3+5+8+5$	22 No, is $>$ no of cups of coffee in the table		M1 add frequencies A1 cao B1 'average cannot be bigger than 6 ' oe OR 'Average must be less than 6 oe'
13 (a) (b) (c) (d)		Trapezium $(2,3)$ Isosceles Q correct	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	B1 cao ignore spelling B1 cao B1 cao ignore spelling B1 cao

Paper 5502				
No	Working	Answer	Mark	Notes
$\begin{array}{ll} \hline 14 & \text { (a) } \\ & \text { (b) } \end{array}$	$\frac{28}{4}$	250000	1 2	B1 cao M1 for $\frac{28}{4}$ oe or " 250000 " $\times 28$ A1 cao SC B1 for 7000000
15 (a) (b) (c)	$\frac{110}{22}$	$\begin{aligned} & 10 \\ & 5.5 \\ & 50 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 3 \end{aligned}$	B1 cao B1 ± 0.3 pounds M1 for use of graph at 11 or $\frac{110}{22}$ A1 for 5 A1 cao SC B2 for 49.5-50.6

Paper 5502				
No	Working	Answer	Mark	Notes
(a) (b)	$\begin{aligned} & 269.30-56.80=212.50 \\ & \frac{212.50}{42.50} \\ & 5 \% \text { of } £ 269.30 \\ & £ 269.30-" £ 13.465 " \\ & \text { OR } \frac{95}{100} \times 269.30 \end{aligned}$	6 255.83 or 255.84	2 3	M1 for $\frac{269.30-56.80}{42.50}$ or 5 seen A1 cao M1 for $(5 \div 100) \times 269.30$ M1 for 269.30 - " 13.465 " A1 cao OR M2 for $\frac{95}{100} \times 269.30$ A1 cao Alternative Method: M1 for $\frac{5}{100} \times 56.80(=2.84)$ and $\frac{5}{100} \times 42.50(=2.12(5))$ (OR 53.96 AND 40.38 (40.375) seen M1 for 56.80 - " 2.84 " (= 53.96) 42.50 - "2.12(5)" ($=40.375$ or 40.38) " 5 " \times " 40.375 " + " 53.96 " A1 cao
17	$4.1^{2} \times 1.07=16.81 \times 1.07$	17.9867	2	M1 for ("4.1") followed by squaring, or sight of 16.81 A1 cao SC: B1 for 18 or better with no working
18 (a) (b) (c)	$\begin{aligned} & 360-60-90-90 \\ & 6 \times 2 \end{aligned}$	$\begin{gathered} \hline 60 \\ 120 \\ 12 \end{gathered}$	$\begin{aligned} & 1 \\ & 2 \\ & 2 \end{aligned}$	B1 cao M1 for $360-" 60 "-90-90$ or $180-" 60 "$ A1 cao M1 for 6×2 A1 cao for 12

UG014129

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Paper 5502} \\
\hline No \& Working \& Answer \& Mark \& Notes \\
\hline \begin{tabular}{l}
19 (a)(i) \\
(ii) \\
(b)
\end{tabular} \& \[
\begin{aligned}
\& 240 \times 5=1200 \\
\& \frac{50}{1250^{\prime}} \\
\& \frac{60}{100} \times 1000=600
\end{aligned}
\] \& \[
\begin{aligned}
\& 1250 \\
\& \frac{1}{25}
\end{aligned}
\]
12:5 \& 3

3 \& | B1 cao 1250 |
| :--- |
| M1 cao $\frac{50}{1250^{\prime}}$ |
| A1 for $\frac{1}{25}$ in its simplest form M1 for $\frac{60}{100} \times 1000$ oe |
| A1 for 600 |
| A1 cao |

\hline | $20 \quad$ (a) |
| :--- |
| (b) |
| (c) | \& \[

x+5+x+5+x+2+x+2
\]

\[
‘ 4 x+14 \prime=20

\] \& | $\begin{gathered} x+2 \\ 4 x+14 \end{gathered}$ |
| :--- |
| 1.5 oe | \& | $\begin{aligned} & 1 \\ & 2 \end{aligned}$ |
| :--- |
| 2 | \& | B1 accept $2+x$ but not $x=x+2$ |
| :--- |
| M1 adding 4 sides, two of which are ' $x+2$ ' (all sides to be linear expressions in x) |
| SC $x+5+x+2 \times 2$ gets M1 |
| A1 for correct simplified answer or $(20-14) \div 4$ oe gets M1 |
| M1 for equation |
| A1 cao |

\hline 21 \& $\sum \mathrm{f}=90$ \& Angles drawn, labelled \& 3 \& | M1 for 1 person $=4^{\circ}$ or one angle correct in table or pie chart |
| :--- |
| A1 any 2 correctly drawn angles in pie chart |
| A1 fully correct chart labelled |

\hline | 22 |
| :--- |
| (b) | \& $5 x=3+4$ \& | $\begin{equation*} 2 p-q \tag{a} \end{equation*}$ |
| :--- |
| 1.4 | \& 2

2 \& | B1 cao for $2 p$ |
| :--- |
| B1 cao for $-q$ accept $(-q+2 p), 2 p-1 q$ and $2 p+-q$ |
| M1 for either (+3 or sight of 7) or ($\div 5$ or sight of 0.8 and 0.6) |
| A1 cao accept $\frac{7}{5}$ or $1 \frac{2}{5}$ |

\hline
\end{tabular}

Paper 5502				
No	Working	Answer	Mark	Notes
23 (a) (b) (c)	$1+2+3+4+5+6+7+8$ $\frac{100 \times 101}{2}$	$\begin{aligned} & \frac{4 \times 5}{2} \\ & \frac{8 \times 9}{2} \\ & 5050 \end{aligned}$	1 1 1	B1 cao B1 cao B1 cao
24	0 5788 1 000025556 2 000045 3 35 Key $1 \mid 2=12(\mathrm{~min})$	See working	3	B1 for stem $0,1,2,3$ or $0,10,20,30$ B1 for accurate unordered leaves condone 1 error or omission B1 for key and ordered leaves all correct
25	$\begin{aligned} & 3.2 \times 2.8=8.96 \\ & 2 \times 4.5 \times 2.8=25.2 \\ & 2 \times 4.5 \times 28.8=28.8 \\ & \frac{62.96}{2.5} \times 2.99 \end{aligned}$	£75.30	5	M1 for area of any face found correctly M1 for 2 areas found correctly A1 for 62.96 or 54 M1 for $\frac{\text { ' } 62.96 \text { ' }}{2.5} \times 2.99$ Al cao Alternate method for candidates who round up "62.92" M1 for " 26 " $\times 2.99$ A1 for $£ 77.74$ cao SC: for top included B2 for $71.92 \mathrm{~m}^{2}$ seen or B3 for $£ 86.02$ seen SC B4 for $£ 64.58$ or $£ 65.78$ seen
26	2.5×10000	25000	2	M1 for $2.5 \times 100 \times 100$ A1 cao

Paper 5503				
No	Working	Answer	Mark	Notes
1 (a)(i) (ii) (b) (c)	$6 x+8-12 x+15$	$8 g$ $10 r p$ $10 y-15$ $-6 x+23$	2 1 2	B1 oe B1 for $10 p r$ or $10 r p$ B1 cao accept $10 y-+15$ M1 for 3 correct terms out of 4 A1 cao
2		$m=6 n$	2	B2 for $m=6 n$ oe accept $6 \times n, n 6$ (B1 for $6 n$ alone, or $6 n+1$ oe OR $m=$ multiple of n except $m=n$)
3 (i) (ii) (iii)		$\begin{aligned} & 0.067,0.56,0.6, \\ & 0.605,0.65 \\ & -10,-6,-4,2,5 \\ & \frac{2}{5}, \frac{1}{2}, \frac{2}{3}, \frac{3}{4} \end{aligned}$	$\begin{array}{r} 1 \\ 1 \\ 2 \end{array}$	B1 cao Ignore trailing zeros B1 cao B2 all four correct (B1 any three in correct order) SC: B1 all 4 in reverse order
4		$\begin{array}{cccc} \hline & & 7 \\ & 5 & \\ & 5 & 13 & 33 \\ 52 & 23 & \end{array}$	3	B3 all correct (B2 for 4, 5 or 6 correct entries) (B1 for 2, 3 correct entries)

Paper 5503

No	Working	Answer	Mark	Notes
5		$\frac{2}{3}$	3	M1 for 3 rows (9 squares) shaded M1 for 2 columns (10 squares) shaded A1
	$\begin{aligned} & \frac{3}{5}=\frac{9}{15} \\ & \frac{2}{3}=\frac{10}{15} \\ & \text { Therefore } \frac{2}{3}>\frac{3}{5} \end{aligned}$	$\frac{2}{3}$		M1 for $\frac{3}{5}=\frac{9}{15}$ M1 for $\frac{2}{3}=\frac{10}{15}$ A1
	OR $\frac{3}{5}=0.6$ or percent $\frac{2}{3}=0.66$ or 0.67 or better Therefore $\frac{2}{3}>\frac{3}{5}$	$\frac{2}{3}$		M1 for $\frac{3}{5}=0.6$ or percent M1 for $\frac{2}{3}=0.66$ or 0.67 or better A1
6	$\begin{aligned} & 2 \times 29=58 \\ & 5 \times 30=150 \\ & 2 \times 31=62 \\ & 1 \times 32=32 \\ & \frac{302}{10}=30.2 \\ & \hline \end{aligned}$	30.2	3	M1 for freq \times no. pins (at least 3) M1 for totalling and for $\div 10$ (dep on $1^{\text {st }} \mathrm{M} 1$) A1 cao
7 (a) (b)			2 3	B1 for 180° rotation (wrong centre) B1 cao B1 for any enlargement sf other than 1 B1 for all sides halved B1 for position

Paper 5503

No		Working	Answer	Mark

Paper 5503				
No	Working	Answer	Mark	Notes
(a) (b)	Bryani was correct $4 \times 3^{2}=4 \times 9=36$	Bryani	2 1	M1 for 4×9 or $4 \times 3 \times 3$ or "square the three $/ x$ then multiply by four" A1 Bryani SC 4×3^{2} with Bryani gets B2 B1 cao
$12 \quad \text { (a) }$ (b)			3 2	B2 for rectangle height 4 squares, base 3 squares (B1 for rectangle with one correct dimension) B1 for line 1 square from the top SC B2 for completely correct elevation on its side B2 for perspective drawing showing slant face and cut out (B1 for perspective drawing with either slant face or cut out omitted or one aspect incorrect)
(a) (b)	$20 \times 2 \text { or } \frac{20}{30} \times 60 \text { or } 20 \div \frac{1}{2}$ $\frac{20}{60}$ or $\frac{1}{3}$ or 20 minutes seen	40 Line from $(45,20)$ to $(65,0)$	2 2	M1 for 20×2 or $\frac{20}{30} \times 60$ or $20 \div \frac{1}{2}$ A1 cao M1 for $\frac{20}{60}$ or $\frac{1}{3}$ or 20 minutes seen A1 for correct line SC If M0, B1 for line from $(45,20)$ to $(t, 0)$ where $t>45$ or a line of the correct gradient
 14 (i) (ii) (iii)		$\begin{gathered} 119.31 \\ 119310 \\ 1.23 \end{gathered}$	3	$\begin{aligned} & \text { B1 cao } \\ & \text { B1 cao } \\ & \text { B1 cao } \end{aligned}$

Paper 5503				
No	Working	Answer	Mark	Notes
15	$\begin{aligned} & \frac{10}{100} \times 12000 \\ & 12000-1200=10800 \\ & \frac{10800}{10}=1080 \\ & 10800-1080=£ 9720 \end{aligned}$	£9720	3	M1 for $\frac{10}{100} \times 12000$ or sight of 1200 or 2400 or 10800 or 9600 M1 (dep) for $\frac{10}{100} \times\left(12000-\frac{10}{100} \times 12000\right)$ or sight of 1080 A1 cao Alternative mark scheme M2 for $12000 \times\left(1-\frac{10}{100}\right)^{2}$ (M1 for $12000 \times\left(1-\frac{10}{100}\right)$ A1 cao
16 (a) (b)	$\begin{aligned} & 2 p=6 \\ & 7 r-5 r=-20-2 \end{aligned}$	$\begin{gathered} p=3 \\ -11 \end{gathered}$	2	M1 for $7 p-5 p=8-2$ or $2 p$ or 6 A1 cao M1 for $7 r+2=5 r-20$ or $\frac{7 r}{5}+\frac{2}{5}=r-4$ or $7 r-5 r=20-2$ or $\frac{7 r}{5}-r=-4-\frac{2}{5}$ A1 cao
17		$5 n+1$	2	B2 oe (B1 for $5 n$ seen) NB: $n=$ gets B1 max

Paper 5503				
No	Working	Answer	Mark	Notes
18 (a) (b)	$\begin{aligned} & -1,0,1 \\ & (-1,-1),(0,-1),(1,-1),(0,0), \\ & (1,0),(1,1) \end{aligned}$		2	B2 for $-1,0,1$ (B1 for $-1,0$ or 0,1 or $-1,1$ or $-2,-1,0,1$ only) B3 for 6 points correct B2 for 3 points correct B1 for 1 point correct NB -B1 each additional point over six
19 (a) (b)	Rotation, 180°, centre $(0,1)$ Enlargement sf - 1 centre $(0,1)$		2 2	M1 for correct orientation A1 cao B2 for 180° 'rotation' centre $(0,1)$ B2 for Enlargement sf - 1 centre $(0,1)$ (B1 for any two of the three parts) NB: B0 if additional transformation is included
20	Bisector of $\angle B A C$ Arc around A Region		3 	B3 cao (B2 for either two correct boundaries, no shading/ wrong shading or one correct boundary, one incorrect boundary with valid shading) (B1 for either two incorrect boundaries but one drawn from A and one intersection, with valid shading or one correct boundary) Ignore shading outside the triangle
21		Length Volume Area	3	B1 for Length B1 for Volume B1 for Area
22 (a) (b)	Unbiased question with choices		2	B1 for unbiased question B1 for at least 2 choices Classification 1: A biased question Classification 2: A restricted sample of people Classification 3: Not specifying a range of foods Classification 4: Nothing to do with eating habits B2 reasons which satisfy 2 different classifications (B1 a reason which satisfies one classification)

Paper 5503				
No	Working	Answer	Mark	Notes
(b)	$\begin{align*} & 6 \times 10^{2} \times 8 \times 10^{4} \tag{a}\\ & 48 \times 10^{6} \\ & 200000+30000 \end{align*}$	$\begin{gathered} 4.8 \times 10^{7} \\ 230000 \end{gathered}$	3 2	M1 for $6 \times 10^{a} \times 8 \times 10^{b}$ oe, a and b integers including 0 A1 for 48×10^{6} oe A1 cao B2 cao (B1 for sight of 200000 or 30000 or 2.3×10^{5} or 23×10^{4})
24 (i) (ii) (iii)	$\sqrt{16 \times 9}=\sqrt{144}$	$\begin{gathered} \hline 64 \\ 3 \\ 12 \end{gathered}$	4	B1 cao B1 cao B2 cao (B1 for sight of $\sqrt{2^{4}} \times \sqrt{9}$ or better, or 144 seen)
25 (ii)	Tangent 90° to diameter/radius/ line from (through) centre $180-(90+\text { " } 27 ")$ angle in semicircle (is 90°)/Alternate segments /angle at centre twice at circumference	$\begin{align*} & 27^{\circ} \tag{i}\\ & 63^{\circ} \end{align*}$	4	B1 for 27° cao B1 for reason B1 ft for $90-$ " $27^{\prime \prime}$ if not 63° B1 for reason
26 (a)(i) (ii) (b)		$\begin{aligned} & 152 \\ & 177 \end{aligned}$	2 3	B1 cao B1 cao B1 for median marked at 167 B1 ft for postion of box with its ends at " 152 " and " 177 " B1 for position of whiskers with ends at 132 and 182 NB: For any points plotted between 141 and 149 give a tolerance of an extra ± 1 square
27	$x^{2}+x y+x y+y^{2}$	$x^{2}+2 x y+y^{2}$ 25	2 2	M1 for at least 3 of the 4 terms correct A1 cao M1 for recognising $3.47+1.53$ (=5) A1 cao

Paper 5504				
No	Working	Answer	Mark	Notes
1 (a) (b)	$4.1^{2} \times 1.07=16.81 \times 1.07$	$\begin{aligned} & 17.9867 \\ & (1.6+3.8 \times 2.4) \\ & \times 4.2 \end{aligned}$	$\begin{array}{ll}2 & \\ \\ & 1\end{array}$	M1 for (4.1) followed by squaring, or sight of 16.81 A1 cao SC: B1 for 18 or better with no working B1 cao Allow additional brackets if they give an expression with value 45.024
$2 \quad \text { (a) }$ (b)	$\begin{aligned} & 269.30-56.80=212.50 \\ & 5 \% \text { of } £ 269.30 \\ & £ 269.30-\text { "£13.465" } \\ & \text { OR } \frac{95}{100} \times 269.30 \end{aligned}$	6 255.83 or 255.84	2 3	M1 for $\frac{269.30-56.80}{42.50}$ or 5 seen A1 cao M1 for $(5 \div 100) \times 269.30$ M1 (dep) for 269.30 - "13.465" A1 cao OR M2 for $\frac{95}{100} \times 269.30$ A1 cao Alternative Method: M1 for $\frac{5}{100} \times 56.80(=2.84)$ and $\frac{5}{100} \times 42.50(=2.12(5))$ (OR 53.96 AND 40.38 (40.375) seen M1 for $56.80-$ " 2.84 " ($=53.96$) 42.50 - "2.12(5)" ($=40.375$ or 40.38) " 5 " \times " $40.375 "+$ " $53.96 "$ A1 cao

Paper 5504				
No	Working	Answer	Mark	Notes
3 (a) (b) (c) (d)	$\begin{aligned} & 360-60-90-90 \\ & 6 \times 2 \end{aligned}$	60 120 12 Correct drawing	$\begin{aligned} & 1 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	B1 cao M1 for $360-" 60 "-90-90$ or $180-" 60 "$ A1 cao M1 for 6×2 A1 cao 12 B2 for triangle and construction lines (see overlay) (B1 for 1 line of length 4 cm and correct arcs crossing OR for correct triangle with either no arcs or incorrect arcs) SC: B1 similar triangle drawn with construction lines
$4 \quad \mathrm{a}$ (i) (ii) (b)	$\begin{aligned} & 240 \times 5=1200 \\ & \frac{50}{1250} \\ & \frac{60}{100} \times 1000=600 \\ & 600: 250 \end{aligned}$	$\begin{aligned} & 1250 \\ & \frac{1}{25} \\ & 12: 5 \end{aligned}$	3 3	B1 cao 1250 M1 $\frac{50}{" 1250 "}$ A1 oe in its simplest form M1 for $\frac{60}{100} \times 1000$ oe A1 for 600 A1 cao
5 (a) (b) (c)	$x+5+x+5+x+2+x+2$ $" 4 x+14 "=20$	$\begin{gathered} x+2 \\ 4 x+14 \end{gathered}$ 1.5	$\begin{aligned} & 1 \\ & 2 \\ & 2 \end{aligned}$	B1 M1 adding 4 sides, two of which must be ' $x+2$ ' (all sides to be linear expressions in x) A1 for correct simplified answer M1 for equation " $4 x+14$ " $=20$ OR $\frac{20-14}{4}$ oe A1 cao

Paper 5504				
No	Working	Answer	Mark	Notes
(a) (b)	$5 x=3+4$	$\begin{gathered} 2 p-q \\ 1.4 \end{gathered}$	2	B1 cao for $2 p$ B1 cao for $-q$ accept $-q+2 p$ and $2 p-1 q$ M1 for either (+3 or sight of 7) or ($\div 5$ or sight of 0.8 and 0.6) A1 cao accept $\frac{7}{5}$ or $1 \frac{2}{5}$
(a) (b) (c) (d)	$\begin{aligned} & 1+2+3+4+5+6+7+8 \\ & \frac{100 \times 101}{2} \end{aligned}$	$\begin{gathered} \frac{4 \times 5}{2} \\ \frac{8 \times 9}{2} \\ 5050 \\ \frac{n(n+1)}{2} \end{gathered}$	1 2	B1 cao B1 cao B1 cao B2 cao (B1 for any quadratic in n)
8	$\begin{aligned} & 3.2 \times 2.8=8.96 \\ & 2 \times 4.5 \times 2.8=25.2 \\ & 2 \times 4.5 \times 3.2=28.8 \\ & \frac{62.96}{2.5} \times 2.99 \end{aligned}$	75.30	5	M1 for area of any face found correctly M1 for 2 areas seen A1 for 62.96 or 54 M1 for $\frac{{ }^{\prime 62.96}}{2.5} \times 2.99$ A1 cao Alternate method for candidates who round up "62.96" M1 for "26" x 2.99 A1 for $£ 77.74$ cao SC: for top included B2 for $71.92 \mathrm{~m}^{2}$ seen or B3 for $£ 86.02$ or $£ 86.71$ SC: B4 for $£ 64.58$ or $£ 65.78$ seen

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Paper 5504} \\
\hline No \& Working \& Answer \& Mark \& Notes \\
\hline 9 \& \(2.5 \times 10000\) \& 25000 \& 2 \& M1 for \(2.5 \times 10000\) or \(2.5 . \times 100 \times 100\) A1 cao \\
\hline \begin{tabular}{l}
\(10 \quad\) (a) \\
(b)
\end{tabular} \& \[
\begin{aligned}
\& \sum \mathrm{f}=90 \\
\& (88), 144,32,96 \\
\& 0.38+0.27+0.15
\end{aligned}
\] \& Angles drawn, labelled
\[
0.20
\] \& 3
2 \& \begin{tabular}{l}
M1 for 1 person \(=4^{\circ}\) or one angle correct in table or pie chart \\
A1 any 2 angles correctly drawn in pie chart \\
A1 fully correct chart labelled \\
M1 1 - sum \\
A1 cao
\end{tabular} \\
\hline 11 \& \begin{tabular}{l}
\begin{tabular}{l|ll}
0 \& 5788 \\
1 \& 000025556 \\
2 \& 0 \& 00045 \\
3 \& 35
\end{tabular} \\
Key \(1 \mid 3=13(\mathrm{~min})\)
\end{tabular} \& See working column \& 3 \& \begin{tabular}{l}
B1 for stem 0, 1, 2, 3 or \(0,10,20,30\) \\
B1 for accurate unordered leaves condone 1 error or omission \\
B1 for key and ordered leaves all correct
\end{tabular} \\
\hline \begin{tabular}{l}
\[
12 \quad \text { (a) }
\] \\
(b)
\end{tabular} \& \[
\begin{aligned}
\& V=\pi \times 4^{2} \times 10 \\
\& P^{2}=10^{2}+8^{2} \\
\& P=\sqrt{ } 164
\end{aligned}
\] \& \[
\begin{aligned}
\& 502-503 \\
\& \sqrt{ } 164<13
\end{aligned}
\] \& 2
3 \& \begin{tabular}{l}
M1 for \(\pi \times 4^{2} \times 10\) \\
A1 502-503 \\
M1 for sight of a correct right-angled triangle \\
M1 for \(10^{2}+8^{2}\) \\
A1 for conclusion based on a correct calculation or 12.8 seen
\end{tabular} \\
\hline \begin{tabular}{l}
\[
13
\] \\
(a) \\
(b) \\
(c)
\end{tabular} \& \[
2 \times 30
\]
\[
2 \times 48
\]
\[
2^{5} \times 3 \times 5
\] \& \[
\begin{gathered}
2 \times 2 \times 3 \times 5 \\
2^{5} \times 3 \\
\\
12 \\
480
\end{gathered}
\] \& 4

1

2 \& | M1 for systematic method, eg division, factor trees (at least one prime) |
| :--- |
| A1 cao |
| M1 for systematic method, eg division, factor trees (at least one prime) |
| A1 cao |
| B1 cao |
| B2 cao |
| B1 for $2^{5} \times 3 \times 5$ or any correct common multiple |

\hline
\end{tabular}

Paper 5504				
No	Working	Answer	Mark	Notes
(b) (c)	$\begin{aligned} & 80 \%=5200 \\ & \frac{5200}{80} \times 100 \end{aligned}$	$150<\mathrm{C} \leq 200$ No, because the $21^{\text {st }}$ value is in the same interval 6500	2 1 3	M1 use of cum freq to find the cost of the $20^{\text {th }}$ or $20.5^{\text {th }}$ car $\text { OR } \frac{1}{2} \Sigma f \text { or } \frac{1}{2}(\Sigma f+1)$ A1 eg 150 to 200 B1 $20.5^{\text {th }}$ or $21^{\text {st }}$ in same interval or an alternative correct explanation M1 for $(100-20) \%=5200$ M1 for $\frac{5200}{" 80 "} \times 100$ A1 cao
$15 \quad \text { (a) }$ (b)	$\begin{aligned} & x^{2}(x+1)=230 \\ & \\ & ' 5-150 \\ & 5.1-158.7 \\ & 5.2-167.6 \\ & \\ & 5.3-177.0 \\ & \\ & 5.4-186.6 \\ & 5.5-196.6 \\ & 5.6-207.0 \\ & 5.7-217.7 \\ & 5.8-228.8 \\ & 5.9-240.2 \\ & 5.85-234.4 \end{aligned}$	AG 5.8	$\begin{aligned} & 2 \\ & 4 \end{aligned}$	M1 for $x \times x \times(x+1)$ or $x \times x \times x+1$ oe A1 cao from $x \times x \times(x+1)$ B 2 for trial between 5.8 and 5.9 inclusive (B1 for different trial between 5 and 6 inclusive) B1 for different trial between 5.8 and 5.85 (not including 5.8) B1 (dep on at least one previous B1) cao for 5.8, 5.81, 5.811

Paper 5504				
No	Working	Answer	Mark	Notes
16	$\pi \times\left(\frac{15}{2}\right)^{2}=176.715$	$88.4 \mathrm{~cm}^{2}$	3	M1 for $\pi \times\left(\frac{15}{2}\right)^{2}$ A1 88.3-88.4 B1(ind) for cm^{2}
(a) (b) (c)	$5=0.5 x+1$	8 $\begin{gathered} y=\frac{1}{2} x+c \\ x=2 y-2 \text { OR } \\ x=2(y-1) \end{gathered}$	2 1 2	M1 for $5=0.5 x+1$ A1 cao B1 $y=\frac{1}{2} x+c, \mathrm{c} \neq 1$, oe M1 for correctly multiplying both sides by 2 or correctly isolating $\frac{x}{2}$ A1 for $x=2(y-1), x=\frac{y-1}{0.5}, x=\frac{y-1}{\frac{1}{2}} \mathrm{oe}$ SC: B1 for $x=2 y-1$
18	$\begin{aligned} & 4 x-6 y=22 \\ & 15 x+6 y=54 \\ & 19 x=76 \end{aligned}$	$x=4, y=-1$	4	M1 for coefficients of x or y the same followed by correct operation, one arithmetical error A1 cao M1 (dep on previous M mark) for sub for other variable A1 cao Trial and improvement -0 unless both x and y correct values found

Paper 5504				
No	Working	Answer	Mark	Notes
19 (a) (b)	$\begin{aligned} & \mathrm{SF}=\frac{10}{6} \\ & \frac{10}{6} \times 4.8=8 \\ & \frac{10}{6} \times 4.5-4.5=3 \end{aligned}$	19.8	2 2	M1 for sight of $\frac{10}{6}$ or $\frac{6}{10}$ or 1.67 or better or $\frac{C D}{10}=\frac{4.8}{6}$ A1 cao M1 for use of SF from (a) to find $B C$ or $A C$ and adding 4 sides A1 cao
20	$\frac{6 \times 10^{15}}{3.2 \times 10^{8}}$ 1.875×10^{7}	4.3×10^{3}	3	B3 for 4.3×10^{3} to 4.34×10^{3} (B2 for 1.875×10^{7} oe or 4300 to 4340 or final answer of 1.9×10^{7}) (B1 for sight of 6×10^{15} oe or 3.2×10^{8} oe)
21	$8.5 \times \tan 38=8.5 \times 0.7813$	6.64	3	M1 for correct use of trig, eg $\tan 38=\frac{o p p}{8.5}$ M1 for $8.5 \times \tan 38$ A1 6.64-6.641

Paper 5504				
No	Working	Answer	Mark	Notes
22 (a)		No, as you would expect about 100 . Yes, as it is possible to get 200 sixes with a fair dice	1	B1 for a consistent answer
(b)	$\frac{1}{6}, \frac{5}{6}+\text { labels }$		3	B1 for $\frac{5}{6}$ on the red dice, not six branch B1 for a fully complete tree diagram with all branches labelled B1 for $\frac{1}{6}, \frac{5}{6}$ on all remaining branches as appropriate

Paper 5505

No	Working	Answer	Mark	Notes
1 (i) (ii) (iii)		$\begin{gathered} 119.31 \\ 119310 \\ 1.23 \end{gathered}$	3	B1 cao B1 cao B1 cao
2	$\begin{aligned} & \frac{10}{100} \times 12000=1200 \\ & 12000-1200=10800 \\ & 10800 \div 10=1080 \\ & 10800-1080=£ 9720 \end{aligned}$	9720	3	M1 for $\frac{10}{100} \times 12000$ or sight of 1200 or 2400 or 10800 or 9600 M1 (dep) for $\frac{10}{100} \times\left(12000-\frac{10}{100} \times 12000\right)$ or sight of 1080 A1 cao Alternative markscheme M2 for $12000 \times\left(1-\frac{10}{100}\right)^{2}$ (M1 for $12000 \times\left(1-\frac{10}{100}\right)$) A1 cao
3	$7 r-5 r=-20-2$	-11	2	M1 for $7 r+2=5 r-20$ or $\frac{7 r}{5}+\frac{2}{5}=r-4$ or $7 \mathrm{r}-5 r=-20-2$ or $\frac{7 r}{5}-r=-4-\frac{2}{5}$ A1 cao

Paper 5505				
No	Working	Answer	Mark	Notes
$4 \quad \text { (a) }$ (b)		$\begin{aligned} & -1,0,1 \\ & (-1,-1)(0,-1) \\ & (1,-1)(0,0) \\ & (1,0)(1,1) \end{aligned}$	2	B2 for $-1,0,1$ only (B1 for $-1,0$ or 0,1 or $-1,1$ or $-2,-1,0,1$ only) B3 for 6 points correct (B2 for 3 points correct) (B1 for 1 point correct) NB: -B1 for each additional point over six
5		$5 n+1$	2	B2 oe (B1 for $5 n$ seen) NB: $n=$ gets B1 max
6 (a) (b)	Rotation, 180°, centre $(0,1)$ Enlargement sf -1 centre $(0,1)$		2	M1 for correct orientation A1 cao B2 for 180° 'rotation' centre $(0,1)$ or for Enlargement sf - 1 centre $(0,1)$ (B1 for any two of the three parts) NB: B0 if additional transformation is included
7	Bisector of $\angle B A C$ Arc around A Region	See overlay	3	B3 cao (B2 for either two correct boundaries, no shading/ wrong shading or one correct boundary, one incorrect boundary with valid shading) (B 1 for either two incorrect boundaries but one drawn from A and one intersection, with valid shading or one correct boundary) Ignore shading outside the triangle
8		Length Volume Area	3	B1 for Length B1 for Volume B1 for Area

Paper 5505				
No	Working	Answer	Mark	Notes
9 (a) (b)	Unbiased question with choices Leading question and a restricted sample		2 2	B1 for unbiased question B1 for at least 2 choices Classification 1: A biased question Classification 2: A restricted sample of people Classification 3: Not specifying a range of foods Classification 4: Nothing to do with eating habits B2 reasons which satisfy 2 different classifications (B1 a reason which satisfies one classification)
10 (a) (b)	$\begin{aligned} & 6 \times 10^{2} \times 8 \times 10^{4} \\ & 48 \times 10^{6}=4.8 \times 10^{7} \\ & 200000+30000=230000 \end{aligned}$	4.8×10^{7} 230000	3 2	M1 for $6 \times 10^{a} \times 8 \times 10^{b}$ oe, a and b integers including 0 A1 for 48×10^{6} oe A1 cao B2 cao (B1 for sight of 200000 or 30000 or 2.3×10^{5} or 23×10^{4})
11 (a) (b)	$x^{2}+x y+x y+y^{2}$	$\begin{gathered} x^{2}+2 x y+y^{2} \\ 25 \end{gathered}$	2 2	M1 for at least 3 of the 4 terms correct A1 cao M1 for recognising 3.47+1.53 (=5) A1 cao
(ii)	Tangent 90° to diameter/radius/ line from (through) centre $180-(90+\text { " } 27 ")$ angle in semicircle (is 90°)/Alternate segments /angle at centre twice at circumference	$\begin{align*} & 27^{\circ} \tag{i}\\ & 63^{\circ} \end{align*}$	4	B1 for 27° cao B1 for reason B1 ft for $90-$ " $27^{\prime \prime}$ if not 63° B1 for reason
13 (i)		$\begin{gathered} p^{9} \\ 6 q^{6} \end{gathered}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	B1 cao B2 for $6 q^{6}$ (B1 for sight of $\frac{6 q^{9}}{q^{3}}$ or $3 q \times 2 q^{5}$ or $3 q^{4} \times 2 q^{2}$ or $6 \times q \times q \times q \times q \times q \times q$ or final answer of the form $k q^{6}, k>0$)

Paper 5505

No	Working	Answer	Mark	Notes
14 (a)(i) (b)		$\begin{align*} & 152 \tag{ii}\\ & 177 \end{align*}$	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	B1 cao B1 cao B1 for median marked at 167 B1 ft for postion of box with its ends at " 152 " and " 177 " B1 for position of whiskers with ends at 132 and 182 NB: For any points plotted between 141 and 149 give a tolerance of an extra ± 1 square
15	$\begin{aligned} & (\operatorname{arc}=) \frac{40}{360} \times 2 \pi \times 9 \\ & =2 \pi \end{aligned}$	$2 \pi+18$	4	M1 for $\frac{40}{360} \times$ M1 for $2 \pi \times 9$ M1 (dep) for $\frac{40}{360} \times 2 \pi \times 9$ oe A1 for $\frac{18 \times \pi}{9}+18$ oe exact form
16 (i) (ii) (iii)		$\begin{gathered} 1 \\ \frac{1}{16} \\ \hline 64 \end{gathered}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	B1 cao B1 cao accept 0.0625 B1 cao condone ± 64

Paper 5505

Paper 5505

No	Working	Answer	Mark	Notes
		60 40 correct bars		B1 cao B1 cao B1 for $30<x \leq 40$ with an area of $21 / 2$ squares B1 for $40<x \leq 70$ with an area of 3 squares SC: $\frac{0}{4}$ give M1 if clearly using area or frequency density
(b) (c)	$6 x+8-12 x+15$ $\begin{aligned} & \frac{(n+1)(n-1)}{n+1} \times \frac{2}{n-2} \\ & \frac{2(n-1)}{n-2} \end{aligned}$	$\begin{aligned} & -6 x+23 \\ & 32 x^{5} y^{15} \\ & \frac{2(n-1)}{n-2} \end{aligned}$	2	M1 for 3 of the 4 terms $6 x,+8,-12 x,+15$ correct A1 cao B2 cao (B1 for two of 32, x^{5}, y^{15}) M1 for $k(n+1)(n-1)$ M1 dep for $\frac{(n+1)(n-1)}{(n+1)}=n-1$ A1 for $\frac{2(n-1)}{n-2}$
21	$\begin{aligned} & \text { Vertices at } \\ & \left(-3,-1 \frac{1}{2}\right),\left(-4 \frac{1}{2},-1 \frac{1}{2}\right),\left(-3,-4 \frac{1}{2}\right) \end{aligned}$	\sqrt{V}	3	B1 for all sides $\times 1^{1 / 2}$ B1 for correct orientation with 2 vertices almost correct B1 cao

Paper 5505

No	Working	Answer	Mark	Notes
22	$\begin{aligned} & \text { Total }=3+5+2(=10) \\ & \frac{3}{10} \times \frac{3}{10} \times \frac{5}{10}\left(=\frac{45}{1000}\right), \frac{3}{10} \times \frac{3}{10} \times \frac{2}{10}\left(=\frac{18}{1000}\right) \\ & \frac{5}{10} \times \frac{5}{10} \times \frac{3}{10}\left(=\frac{75}{1000}\right), \frac{5}{10} \times \frac{5}{10} \times \frac{2}{10}\left(=\frac{50}{1000}\right) \\ & \frac{2}{10} \times \frac{2}{10} \times \frac{3}{10}\left(=\frac{12}{1000}\right), \frac{2}{10} \times \frac{2}{10} \times \frac{5}{10}\left(=\frac{20}{1000}\right) \\ & 3 \times\left(\frac{45 "}{1000}+\frac{118 "}{1000}+\frac{75 "}{1000}+\frac{50 "}{1000}+\frac{12 "}{1000}+\frac{20 "}{1000}\right) \\ & \frac{660}{1000} \end{aligned}$	$\frac{660}{1000} \text { oe }$	5	M3 for all six expressions seen OR their combined equivalents (M2 for four expressions seen OR their combined equivalents) (M1 for two expressions seen OR their combined equivalents) M1 sum of 18 relevant products condone 1 slip A1 for $\frac{660}{1000}$ oe SC: without replacement maximum M4 A0 SC: Just 2 beads: Answer either $\frac{38}{100}$ oe OR $\frac{28}{90}$ oe B1

Paper 5505

No	Working	Answer	Mark	Notes
23 (a)(i) (ii) (b) (c)	$\begin{aligned} \overrightarrow{E X} & =\overrightarrow{E B}+\overrightarrow{B X} \\ & =12 \mathbf{b}+1 / 2 \overrightarrow{B C} \end{aligned}$ $\overrightarrow{A Y}=\frac{5}{3} \overrightarrow{A B}$ or $\overrightarrow{B Y}=\frac{2}{3} \overrightarrow{A B}$ $\overrightarrow{E Y}=16 \mathbf{b}-4 \mathbf{a}$ or $\overrightarrow{X Y}=4 \mathbf{b}-\mathbf{a}$ $\overrightarrow{E Y}=4 \overrightarrow{X Y}$ or $\overrightarrow{E X}=3 \overrightarrow{X Y}$ or $\overrightarrow{E Y}=\frac{4}{3} \overrightarrow{E X}$	$\begin{gathered} 6 \mathbf{b}-6 \mathbf{a} \\ 6 \mathbf{a} \\ 12 \mathbf{b}-3 \mathbf{a} \end{gathered}$ Printer Answer	2 2 3	B1 for $6 \mathbf{b}-6 \mathbf{a}$ oe B1 for $6 \mathbf{a}$ oe M1 for $\overrightarrow{E X}=\overrightarrow{E B}+\overrightarrow{B X}$ oe vector journey in a form ready for straightforward substitution A1 for $12 \mathbf{b}-3 \mathbf{a}$ oe B1 for either $\overrightarrow{A Y}=\frac{5}{3} \overrightarrow{A B}$ or $\overrightarrow{B Y}=\frac{2}{3} \overrightarrow{A B}$ oe B1 ft for either $\overrightarrow{E Y}=16 \mathbf{b}-4 \mathbf{a}$ or $\overrightarrow{X Y}=4 \mathbf{b}-\mathbf{a}$ ft only on parts (a) and (b) B1 for either $\overrightarrow{E Y}=4 \overrightarrow{X Y}$ or $\overrightarrow{E X}=3 \overrightarrow{X Y}$ or $\overrightarrow{E Y}=\frac{4}{3} \overrightarrow{E X}$ oe plus conclusion of E, X, Y on the same straight line
$24 \quad$ (a)(i) (iii) (iv) (b)		$\begin{gather*} (5,-4) \tag{ii}\\ (2,-9) \\ (2,4) \\ (1,-4) \\ (x-2)^{2}-4 \end{gather*}$	4 4	B1 cao B1 cao B1 cao B1 cao B4 for $(x-2)^{2}-4$ oe eg. $x^{2}-4 x$ (B3 for $(x+2)^{2}-4$ or $\left.(x-2)^{2}+4\right)$ (B2 for $x^{2}-4$ or $(x-2)^{2}$ OR $x^{2}+b x, b \neq 0$ OR $(x+2)^{2}+4$ OR $\left.f(x-2)-4\right)$ (B1 for $x^{2}+4$ or $(x+2)^{2}$ or $a x^{2}+b x$ or $x^{2}+b x+c$ OR $x-2-4$ or $x^{2}-2-4, a, b, c \neq 0$)

Paper 5506

\begin{tabular}{|c|c|c|c|c|}
\hline No \& Working \& Answer \& Mark \& Notes \\
\hline \begin{tabular}{l}
\[
1 \quad \text { (a) }
\] \\
(b)
\end{tabular} \& \[
\begin{aligned}
\& V=\pi \times 4^{2} \times 10 \\
\& P^{2}=10^{2}+8^{2} \\
\& P=\sqrt{164}
\end{aligned}
\] \& \[
\begin{gathered}
502-503 \mathrm{~cm}^{3} \\
\sqrt{164}<13
\end{gathered}
\] \& 2
3 \& \begin{tabular}{l}
M1 for \(\pi \times 4^{2} \times 10\) \\
A1 502-503 \\
M1 for sight of correct right angled triangle \\
M1 for \(10^{2}+8^{2}\) \\
A1 for conclusion based on a correct calculation Or 12.8 seen
\end{tabular} \\
\hline \begin{tabular}{l}
\[
2 \quad \text { (a)(i) }
\] \\
(ii) \\
(b) \\
(c)
\end{tabular} \& \[
\begin{aligned}
\& 2 \times 30 \\
\& 2 \times 48 \\
\& \\
\& 2^{5} \times 3 \times 5
\end{aligned}
\] \& \begin{tabular}{l}
\[
2 \times 2 \times 3 \times 5
\]
\[
2^{5} \times 3
\] \\
12
\[
480
\]
\end{tabular} \& 4

1

2 \& | M1 for systematic method, eg division, factor trees (at least one prime) |
| :--- |
| A1 cao |
| M1 for systematic method, division, factor trees (at least one prime) |
| A1 cao |
| B1 cao |
| B2 cao |
| B1 for $2^{5} \times 3 \times 5$ or any correct common multiple |

\hline
\end{tabular}

Paper 5506				
No	Working	Answer	Mark	Notes
3 (a)		$150<C \leq 200$	2	M1 use of cum freq to find the cost of the $20^{\text {th }}$ or $20.5^{\text {th }}$ car OR $\frac{1}{2} \Sigma f^{\text {th }}$ or $\frac{1}{2}(\Sigma f+1)^{\text {th }}$ car.
(b)		No, because the $21^{\text {st }}$ value is in the same interval	1	A1 eg 150 to 200, $150-200$ B1 for $20.5^{\text {th }}$ or $21^{\text {st }}$ value in the same internal consistent with 'a' OR Refers to the median value being low in the interval (statement to be mathematically correct)
(c)	$\begin{aligned} & 80 \%=5200 \\ & \frac{5200}{80} \times 100 \end{aligned}$	6500	3	See additional sheet M1 for $(100-20) \%=5200$ M1 for $\frac{5200}{" 80 "} \times 100$ A1 cao

Paper 5506

No	Working	Answer	Mark	Notes
4 (a) (b)	$\begin{aligned} & x^{2}(x+1)=230 \\ & \\ & 5-1506-252 \\ & 5.1-158.7 \\ & 5.2-167.6 \\ & \\ & 5.3-177.0 \\ & \\ & 5.4-186.6 \\ & 5.5-196.6 \\ & 5.6-207.0 \\ & 5.7-217.7 \\ & 5.8-228.8 \\ & 5.9-240.2 \\ & 5.85-234.4 \end{aligned}$	AG 5.8	2 4	M1 for $x \times x \times(x+1)$ or $x \times x \times x+1$ oe, $x^{2}(x+1)$, $x^{2} \times x+1$ A1 cao from $x \times x \times(x+1)$, no need to see 230 B2 for trial between 5.8 and 5.9 inclusive evaluated (B1 for trial between 5 and 6 inclusive evaluated) B1 for different trial between 5.8 and 5.85 (not including 5.8) B1 dep on at least are previous B1 5.8, 5.81, 5.811
5	$\pi \times\left(\frac{15}{2}\right)^{2}=176.715$	$88.4 \mathrm{~cm}^{2}$	3	M1 for $\pi \times\left(\frac{15}{2}\right)^{2}$ seen A1 88.3-88.4 B1 for cm^{2} (independent)

Paper 5506

\begin{tabular}{|c|c|c|c|c|}
\hline No \& Working \& Answer \& Mark \& Notes \\
\hline \begin{tabular}{l}
\[
6
\] \\
(a) \\
(b) \\
(c)
\end{tabular} \& \(5=0.5 x+1\) \& \[
8
\]
\[
y=\frac{1}{2} x+\mathrm{c}
\]
\[
\begin{gathered}
x=2 y-2 \text { OR } \\
x=2(y-1)
\end{gathered}
\] \& \begin{tabular}{l}
\[
2
\] \\
1
\[
2
\]
\end{tabular} \& \begin{tabular}{l}
M1 for \(5=0.5 x+1\) \\
A1 cao \\
B1 for \(y=\frac{1}{2} x+\mathrm{c}, \mathrm{c} \neq 1\), oe \\
M1 for correctly multiplying both sides by 2 or correctly isolating \(\frac{x}{2}\) \\
A1 for \(x=2(y-1), x=\frac{y-1}{0.5}, \frac{y-1}{\frac{1}{2}}\) oe SC B1 for \(x=2 y-1\)
\end{tabular} \\
\hline 7 \& \[
\begin{aligned}
\& 4 x-6 y=22 \\
\& 15 x+6 y=54 \\
\& 19 x=76
\end{aligned}
\] \& \(x=4, y=-1\) \& 4 \& \begin{tabular}{l}
M1 for coefficients of \(x\) or \(y\) the same followed by correct operation, allow one arithmetical error \\
A1 cao \\
M1 (dep) for correct sub for other variable \\
A1 cao \\
Trial and improvement 0 marks unless both correct values of \(x\) and \(y\) found
\end{tabular} \\
\hline \begin{tabular}{l}
\[
8
\] \\
(a) \\
(b)
\end{tabular} \& \[
\begin{aligned}
\& \mathrm{SF}=\frac{10}{6} \\
\& \frac{10}{6} \times 4.8=8 \\
\& \frac{10}{6} \times 4.5-4.5=3
\end{aligned}
\] \& 8
\[
19.8
\] \& 2

2 \& | M1 for sight of $\frac{10}{6}$ or $\frac{6}{10}$ or 1.67 or better or $\frac{C D}{10}=\frac{4.8}{6}$ |
| :--- |
| A1 cao |
| M1 for use of SF from "a" to find AC or BC or $\frac{B C}{4.5}=\frac{4}{6}$ and adding 4 sides |
| A1 cao |

\hline
\end{tabular}

Paper 5506

No	Working	Answer	Mark	Notes
9	$\begin{aligned} & \frac{6 \times 10^{15}}{3.2 \times 10^{8}} \\ & 1.875 \times 10^{7} \end{aligned}$	4.3×10^{3}	3	B3 for 4.3×10^{3} to 4.34×10^{3} (B2 for 1.875×10^{7} oe or 4300 to 4340 , final answer of 1.9×10^{7} B1 for sight of 6×10^{15} oe or 3.2×10^{8} oe)
10	$\begin{aligned} & 8.5 \times \tan 38 \\ & =8.5 \times 0.7813 \\ & \frac{8.5}{\sin (90-38)}=\frac{A B}{\sin 38} \\ & A B=\frac{8.5 \times \sin 38}{\sin (90-38)} \\ & =\frac{5.2331}{0.788}=6.64 \end{aligned}$	6.64	3	M1 for correct use of trig, eg $\tan 38=\frac{o p p}{8.5}$ M1 for $8.5 \times \tan 38$ A1 6.64-6.641 OR M1 for correct substitution into the sine rule M1 (dep) for correct rearrangement for $A B=$ A1 6.64-6.641
11 (a)		No, as you would expect about 100. Yes, as it is possible to get 200 sixes with a fair dice	1	B1 for a consistent answer See additional sheet

Paper 5506

No	Working	Answer	Mark	Notes
(b)	$\frac{1}{6}, \frac{5}{6}+\text { labels }$		3	B1 for $\frac{5}{6}$ on the red dice, not six branch B1 for a fully complete tree diagram with all branches labelled B1 for $\frac{1}{6}$ and $\frac{5}{6}$ on all remaining branches as appropriate
(c)(i)	$\left(\frac{1}{6}\right)^{2}$	$\frac{1}{36}$	2	M1 $\left(\frac{1}{6}\right)^{2}$ or $\frac{1}{6} \times \frac{1}{6}$ only or 0.28 A1 $\frac{1}{36}$ or 0.03 or better
(ii)	$1-\left(\frac{5}{6}\right)^{2}$ OR $\frac{1}{6} \times \frac{5}{6}+\frac{5}{6} \times \frac{1}{6}+\frac{1}{6} \times \frac{1}{6}$	$\frac{11}{36}$	3	M2 for $1-\left(\frac{5}{6}\right)^{2}$ or $1-\frac{5}{6} \times \frac{5}{6}$ A1 cao OR M1 for $\frac{1}{6} \times \frac{5}{6}$ oe M1 for 2 or 3 only of $\frac{1}{6} \times \frac{5}{6}, \frac{5}{6} \times \frac{1}{6}$, "a" A1 for $\frac{11}{36}$ or 0.31 or better

Paper 5506

No	Working	Answer	Mark	Notes
12 (a)	$\pi \times 30 \times \frac{7.5^{2}}{3}-\pi \times 10 \times \frac{2.5^{2}}{3}=1767-65$	1700	3	M1 for either $\pi \times 30 \times \frac{7.5^{2}}{3}$ or $\pi \times 10 \times \frac{2.5^{2}}{3}$ M1 (dep) for difference A1 1700-1702
(b)	$\begin{aligned} & \frac{S}{2 \pi d}=\sqrt{h^{2}+d^{2}} \\ & \left(\frac{S}{2 \pi d}\right)^{2}=h^{2}+d^{2} \end{aligned}$	$h=\sqrt{\frac{S^{2}-4 \pi^{2} d}{4 \pi^{2} d^{2}}}$	3	SC B1 Using d instead of r, 6800-6808 M1 for correctly isolating $\sqrt{h^{2}+d^{2}}$ or $h^{2}+d^{2}$ or $h+d$ or $k h^{2}$ or $k h$ M1(indep) squaring both sides A1 $\begin{aligned} & h=\sqrt{\frac{S^{2}-4 \pi^{2} d^{4}}{4 \pi^{2} d^{2}}}, \quad h=\frac{\sqrt{S^{2}-4 \pi^{2} d^{4}}}{2 \pi d} \\ & h=\sqrt{\left(\frac{S}{2 \pi d}\right)^{2}-d^{2}} \end{aligned}$
(c)	$\left(\frac{30}{20}\right)^{2} \times 450 \text { or } 450 \div\left(\frac{20}{30}\right)^{2}$	1012.5	2	M1 for sight of correct SF^{2} including 4:9 A1 1010 to 1013

Paper 5506

\begin{tabular}{|c|c|c|c|c|}
\hline No \& Working \& Answer \& Mark \& Notes \\
\hline \begin{tabular}{l}
(a) \\
(b)
\end{tabular} \& \[
\begin{aligned}
\& \frac{2 x(x+20)}{2}=400 \\
\& \frac{-20 \pm \sqrt{20^{2}-4 \times 1 \times(-400)}}{2} \\
\& =\frac{-20 \pm 44.721}{2}
\end{aligned}
\] \& As given
\[
12.361
\] \& 2

3 \& | M1 $\frac{2 x(x+20)}{2}$ or $\frac{2 x \times x+20}{2}$ or $2 x(x+20)=800$ |
| :--- |
| A1 cao following correct working, no need for $=400$ SC B1 $2 x \times x+\frac{1}{2} \times 2 x\left(10-\frac{x}{2}\right) \times 2$ |
| M1 for correct sub, up to signs, in the quad formula |
| A1 for 44.7 or $\sqrt{2000}$ |
| A1 for $12.3606-12.361$, ignore negative solution |
| T.I B3 for 12.361 |
| OR |
| Completing the square |
| M1 for $(x+10)^{2}$ seen |
| A1 for $-10 \pm \sqrt{500}$ |
| A1 for 12.3606-12.361 ignore negative solution |

\hline
\end{tabular}

Paper 5506

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Paper 5506} \\
\hline No \& Working \& Answer \& Mark \& Notes \\
\hline \begin{tabular}{l}
\[
15
\] \\
(a) \\
(b)
\end{tabular} \& \begin{tabular}{l}
\[
4 a^{2}-4 a+1-\left(4 b^{2}-4 b+1\right)=
\]
\[
\begin{aligned}
\& 4\left(a^{2}-b^{2}\right)-4(a-b) \\
\& 4(a-b)(a+b-1)
\end{aligned}
\] \\
OR
\[
\begin{aligned}
\& ((2 a-1)-(2 b-1))((2 a-1)+(2 b-1)) \\
\& (2 a-2 b)(2 a+2 b-2)
\end{aligned}
\] \\
Any 2 odd square numbers have the above form \\
If \(a\) and \(b\) are both even or odd then \(a-b\) is even, so \(4(a-b)\) is a multiple of 8 If one of \(a, b\) is odd, then \(a+b-1\) is even, so \(4(a+b-1)\) is a multiple of 8
\end{tabular} \& AG \& 3

3 \& | Expansion Method |
| :--- |
| M1 for a correct expansion of any one of the three terms M1(dep) on an attempt to expand all 3 terms and show LHS = RHS |
| A1 fully correct algebra RHS exp is $4\left(a^{2}+a b-a-b a-b^{2}+b\right)$ |
| OR Factorisation Method |
| M1 for attempt to use difference of 2 squares on LHS |
| M1 for one bracket correctly simplified |
| A1 fully correct |
| B1 'any 2 square nos have the above form' (may be implied by sight of $(2 a-1)^{2}-(2 b-1)^{2}$ in part (b)) |
| B1 first reason |
| B1 second reason |
| SC B1 for $(2 r+1)^{2}-(2 r-1)^{2}$ |
| B1 for 8 r |

\hline (b) \& | $\begin{aligned} g_{L} & =\frac{2 \times 4.495}{1.35^{2} \times \sin 30.5} \\ g_{u} & =\frac{2 \times 4.505}{1.25^{2} \times \sin 29.5} \end{aligned}$ |
| :--- |
| Round, until lower and upper bounds agree | \& | 9.719 |
| :--- |
| 11.710 |
| 10 | \& 4

1 \& | B2 for any 4 of $4.505,1.25,29.5,4.495,1.35,30.5$ seen |
| :--- |
| (B1 for any two or three seen) |
| B1 for $11.710-11.7103$ |
| B1 cao 9.719-9.71904 |
| B1 for $10+$ reason " they agree to this level of accuracy" |

\hline
\end{tabular}

Paper 5506

\begin{tabular}{|c|c|c|c|c|}
\hline No \& Working \& Answer \& Mark \& Notes \\
\hline \begin{tabular}{l}
\(17 \quad\) (a)(i) \\
(ii) \\
(iii) \\
(b)
\end{tabular} \& Divide to get \(2 y=1\) \& \[
\begin{aligned}
\& \hline x y \\
\& y^{2} \\
\& \frac{x}{2} \\
\& q=-1 \\
\& p=6 \\
\& \hline
\end{aligned}
\] \& 2 \& \begin{tabular}{l}
B1 cao \\
B1 for \(y^{2}\) or \(y \times y\) \\
B1 for \(\frac{x}{2}\) or \(0.5 x\) or \(2^{-1} x\) \\
M1 for \(2 y=1\) or \(\frac{x}{2}=32\) or \(p+q=5\) or \(1+p+2 q=5\) \\
A1 cao
\end{tabular} \\
\hline \begin{tabular}{l}
(a)
(b)(i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
\[
x^{2}-2 m x+m^{2}-k
\] \\
Min value is \(-m^{2}\)
\[
x=m
\]
\end{tabular} \& \[
\begin{aligned}
\& k=m^{2} \\
\& \\
\& -m^{2} \\
\& m
\end{aligned}
\] \& 2

3 \& | M1 for correct exp of $(x-m)^{2}$ or correct completion of the square eg $\left(x-\frac{2 m}{2}\right)^{2}-\left(\frac{2 m}{2}\right)^{2}$ |
| :--- |
| A1 cao |
| SC B1 for $k=-\mathrm{m}^{2}$ |
| M1 for recognition that min value occurs when $(x-m)^{2}=0$ (either (b)(i) or (b)(ii) correct implies this M1) |
| A1 ft on ' k ', " $-k$ " gets M1 A0 |
| A1 cao |

\hline 19 \& $0.06 \times 0.05=0.003$ \& No \& 2 \& | M1 for 0.06×0.05 |
| :--- |
| A1 correct conclusion based on 0.003 or 0.06×0.05 stated as $\neq 0.0011$ |
| OR M1 for statement that for the two events to be independent $\mathrm{P}(\mathrm{BL}$ and CL$)=\mathrm{P}(\mathrm{BL}) \times \mathrm{P}(\mathrm{CL})$ |

\hline
\end{tabular}

Paper 5506				
No	Working	Answer	Mark	Notes
20		$\begin{aligned} & \hline 50 \\ & 50 \\ & 4 \end{aligned}$	3	B1 50 or $\frac{100}{2}$ B1 for 50 or " a " B1 4 or $\frac{360}{90}$ oe

UG014129

Telephone 01623467467
Fax 01623450481
Order Code UG014129 June 2003
For more information on Edexcel qualifications please contact our
Customer Response Centre on 08702409800
or email: enquiries@edexcel.org.uk
or visit our website: www.edexcel.org.uk
London Qualifications Limited. Registered in England and Wales no. 4496750 Registered Office: Stewart House, 32 Russell Square, London WC1B 5DN

