GCSE

Mark Scheme

Mathematics A (1387)

June 2003

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information please call our Customer Response Centre on 0870 240 9800, or visit our website at www.edexcel.org.uk.

June 2003

Publications Code UG014129

All the material in this publication is copyright © London Qualifications Ltd 2003

CONTENTS

Notes on Marking Principles	2
Paper 5501	4
Paper 5502	11
Paper 5503	17
Paper 5504	
Paper 5505	
Paper 5506	40

NOTES ON MARKING PRINCIPLES

NOTES ON MARKING PRINCIPLES

1 Three types of mark are available

M marks - awarded for correct working seen or implied. A marks - conditional accuracy marks which are awarded for accurate working following the award of M marks. B marks - unconditional accuracy marks (independent of M).

2 Abbreviations

cao - correct answer only.

ft - follow through.

· / -Denotes a "follow through" answer.

SC - special case. isw - ignore subsequent working. oe - or equivalent (and appropriate). NB: a candidate cannot benefit from both isw and ft.

3 If no working shown, then

correct answers normally score full marks incorrect (even though nearly correct) answers score no marks.

Marking instructions 4

Misread loses A marks (and sometimes B marks) on that part but ft can be allowed on subsequent parts. M marks can still be earned. If in doubt contact your team leader. If there is a wrong answer in the answer space DO CHECK the working in the body of the script.

If it is clear from working that the "correct" answer has been obtained from incorrect working, award no marks. If in doubt contact your team leader.

If there is a wrong answer in the answer space DO CHECK the working in the body of the script.

If it is clear from working that the "correct" answer has been obtained from incorrect working, award no marks. If in doubt contact your team leader.

5 Style of marking

Answer correct: tick and write part mark in margin NEXT TO BRACKETED MARK. Answer incorrect: cross, but show M, A or B marks if any earned in body of script and transfer the total of these to the margin next to the bracket mark.

Total for each double page at bottom right page (except for back if used), FINAL TOTAL IN RELEVANT BOX ON FRONT COVER.

Nought in margin for fully incorrect question or page AND FOR NO ATTEMPT.

Where no attempt has been made a line should be put in the answer space and zero in the margin next to the bracketed mark

CHOICE OF METHOD – No marks unless one answer is in answer space – then mark that.

CROSSED OUT WORK - if not replaced this should be marked (if legible). There must always be a mark next to bracketed mark in the margin/

6 Follow Through Marks

Follow throughs are guided by two principles:

- (a) Follow throughs which involve a single stage calculation can be awarded without working since you can check the answer yourself, but if ambiguous, do not award.
- (b) Follow throughs which involve more than one stage of calculation can only be awarded on sight of the relevant working, even if it appears obvious that there is only one way you could get the answer given.

7 Probability

Probability answers must be given as fractions, percentages or decimals. If a candidate gives a decimal equivalent to a probability, this should be written to at least two decimal places (unless tenths).

Incorrect notation should lose the accuracy marks, but be awarded any implied method marks.

8 Linear Equations

Full marks can be gained if the solution alone is given on the answer line, or otherwise unambiguously indicated in working (without contradiction elsewhere). Where the correct solution only is shown substituted, but not identified as the solution, the accuracy mark is lost but any method marks can be awarded.

9 Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded in another.

Paper 550	1			
No	Working	Answer	Mark	Notes
1 (a)		46	1	B1 cao
(b)		3.4	1	B1 oe
(c)		Arrow at 430	1	B1 allow \pm half graduation
(d)		Arrow at 3.7	1	B1 allow \pm half graduation
				Accept indications other than arrows as long as they are
				clear
2		1.60	2	B1) Condone
		2.05		B1) reversal
3 (a)	$\frac{18}{24} \text{ or } \frac{9}{12} \text{ or } \frac{6}{8}$	$\frac{3}{4}$	2	B2 for $\frac{3}{4}$ cao
	$\frac{1}{24}$ or $\frac{1}{12}$ or $\frac{1}{8}$	4		4
				(B1 for $\frac{18}{24}$ or $\frac{9}{12}$ or $\frac{6}{8}$) SC B1 for $\frac{1}{4}$ only
(b)		16 squares shaded	1	B1 cao
4 (a)		line	1	B1 within overlay tolerance
(b)		midpoint	1	B1 within overlay tolerance ft from (a) ± 0.2 cm
(c)		rectangle	1	B1 for rectangle 6 cm \pm 0.2cm by 4 cm \pm 0.2cm
5		kilograms, kg	3	B1
		litre, <i>l</i> or cubic metres, m^3		B1
		inches, in		B1
6 (a)		parallel lines marked	1	B1
(b)		right angle marked	1	B1
(c)(i)		acute	1	B1
(ii)		reflex	1	B1

Pape	er 5501				
	No	Working	Answer	Mark	Notes
7	(i)		sphere	1	B1
	(ii)		cylinder	1	B1 Accept circular prism
	(iii)		pyramid	1	B1 Condone omission of "triangular" Accept tetrahedron
8	(a)(i)		40	2	B1 cao
	(ii)		50		B1 cao
	(b)		5 complete symbols	1	B1 cao
	(c)		and oe inc	1	B1
9	(i)		9, 37, 56, 59, 75	5	B1 cao
	(ii)		0.067, 0.56, 0.6, 0.605, 0.65		B1 cao Ignore trailing zeros
	(iii)		-10, -6, -4, 2, 5		B1 cao
	(iv)		2 1 2 3		B2 for all 4 correct
			$\frac{1}{5}, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}$		(B1 for any 3 in correct order)
			5251		SC B1 for all 4 in reverse order (applies to(iv) only)
10	(a)			1	B1
	(b)		Plotting (4, 24)	1	B1 ft from their matchsticks
	(c)		60	1	B1 cao
	(d)		m = 6n	2	B2 for $m = 6n$ oe
					(B1 for $6n$ oe or m = multiple of n except $m = n$)
11	(i)		6, 12	4	B1 cao
	(ii)		4, 16		B1 cao
	(iii)		3, 4, 6 or 3, 4, 6, 12		B1 Condone omission of 12
	(iv)		8,27		B1 cao

NT	XX7 X •			
No	Working	Answer	Mark	Notes
2		2.43	4	B1 for 36 or 0.36
				B1 for 96 or 0.96
				B1 for 125 or 1.25 If none of first 3 B1s awarded then
				SC B1 for four 24s and five 25s seen OR 4×24 and
				5×25 seen
3 (a)(i)		E dia hurah and Dhurauth	3	B1 for 2.43 cao
3 (a)(i)		Edinburgh and Plymouth	3	B1 for Edinburgh or -7
(;;)		12		B1 for Plymouth or 5
(ii)			2	B1ft from (i) if one positive and one negative
(b)		Cardiff and Belfast	2	B1 for Cardiff and Belfast OR –6 and –4
4		London and Plymouth	3	B1 for London and Plymouth OR 3 and 5 B1 cao
4		5 9	3	B1 cao
		8		B1 cao
15 (a)			2	
(a)			2	✓ ×
				2 0 B2
				1 1 B1
				2 1 B1
(b)	$2 \times 2 \times 2$	8	2	M1 for $2 \times 2 \times 2$
				A1 for 8 cao
l6 (a)		30	1	B1 cao
(b)		3	1	B1 cao
(c)	$2 \times 29 = 58$	30.2	3	M1 for freq \times no pins
	$5 \times 30 = 150$			M1 (dep on 1st M1) for totalling and \div 10
	$2 \times 31 = 62$			A1 for 30.2 cao
	$1 \times 32 = 32$			
	$\frac{302}{10} = 30.2$			
	$\frac{302}{10} = 30.2$			

Paper 550	1			
No	Working	Answer	Mark	Notes
17		7 5 5 13 33 52 23	3	B3 all correct (B2 for 4, 5 or 6 correct B1 for 2 or 3 correct)
18 (a)(i) (ii) (iii) (iv) (b) 19		$ \begin{array}{r} 4c \\ p^{4} \\ 8g \\ 10pr OR \ 10rp \\ 10y - 15 \\ \frac{2}{3} \end{array} $	4	B1 oe B1 cao B1 oe B1 B1 cao Accept $10y + -15$ M1 for 3 rows (9 squares) shaded M1 for 2 columns (10 squares) shaded A1 for $\frac{2}{3}$
	$\frac{\frac{3}{5} = \frac{9}{15}}{\frac{2}{3} = \frac{10}{15}}$	$\frac{2}{3}$	3	M1 for $\frac{3}{5} = \frac{9}{15}$ M1 for $\frac{2}{3} = \frac{10}{15}$ A1 for $\frac{2}{3}$
	$\frac{3}{5} = 0.6$ $\frac{2}{3} = 0.66 \text{ or } 0.67 \text{ or better}$	$\frac{2}{3}$	3	M1 for $\frac{3}{5} = 0.6$) Accept M1 for $\frac{2}{3} = 0.66$ or 0.67 or better) percentages A1 for $\frac{2}{3}$

Paper	Paper 5501					
N	No	Working	Answer	Mark	Notes	
20	(a)	$\begin{array}{c ccccc} 955 & 48 \\ \hline 48 & \text{OR} & 955 \\ \hline 7640 & 240 \\ \hline 38200 & 2400 \\ \hline 45840 & 43200 \\ \hline 45840 & 45840 \\ \hline \end{array}$	458.40	3	M1 for complete correct method (condone one computational error) A2 for 458.40 cao (A1 for digits 4584 OR ft if M1 awarded)	
	(b)	$ \begin{array}{r} \underline{14.5} \\ 48 \\ 48 \\ 216 \\ \underline{192} \\ 24 \\ 0 \\ \underline{24 0} \end{array} $	14.50	3	M1 for 1 as first digit in answer and remainder 21 M1 (dep) 4 as second digit in answer A1 for 14.50 (Accept 14.5)	
21	(a)		12 <i>x</i>	1	B1 oe	
	(b)		12x + 10y	2	B2 oe ft from (a) (B1 $12x$ + multiple of y or 10y seen) SC B1 for $x = 12x + 10y$ OR $y = 12x + 10y$	

Paper 55	01			
No	Working	Answer	Mark	Notes
22	$\frac{1}{3} + \frac{1}{4} = \frac{4}{12} + \frac{3}{12} = \frac{7}{12}$	$\frac{5}{12}$	3	M1 for $\frac{4}{12}$ and $\frac{3}{12}$ oe
	$1 - \frac{7}{12} = \frac{5}{12}$			A2 for $\frac{5}{12}$ oe
				(A1 for $\frac{7}{12}$)
				B1 for $1 - "\left(\frac{1}{3} + \frac{1}{4}\right)"$ correctly evaluated
	$1 - \frac{1}{3} = \frac{2}{3}$, $1 - \frac{1}{4} = \frac{3}{4}$	$\frac{5}{12}$	3	B1 for $\frac{2}{3}$ or $\frac{3}{4}$ seen
	$\frac{8}{12} - \frac{3}{12} = \frac{5}{12} \text{ or } \frac{9}{12} - \frac{4}{12} = \frac{5}{12}$			M1 for $\frac{8}{12} - \frac{3}{12} = \frac{5}{12}$ or $\frac{9}{12} - \frac{4}{12} = \frac{5}{12}$
				A1 for $\frac{5}{12}$ oe
		$\frac{5}{12}$	3	M1 for 0.25 and 0.33 or better
		12		A1 for 0.58 or better
				A1 for 0.416 or recurring
23 (a		54	1	B1 cao
(b)(i	180 - (54 + 54)	72	3	M1 for $180 - (54 + 54)$
(::)		Desser		A1 ft from (a) if $x < 90$
(ii)	Reason		B1 for mentioning isosceles and equal or base angles
				or
				equal sides and equal or base angles

Pap	er 5501	-			
	No	Working	Answer	Mark	Notes
24	(a)		Bryani	2	M1 for 4×9 or $4 \times 3 \times 3$ or $4 \times x \times x$ or square x first or square 3 first A1 SC 4×3^2 with Bryani scores B2
	(b)		64	1	B1 cao
25	(a) (b)		dotted line may be solid	3	B2 for rectangle base 3 squares and height 4 squares (B1 for rectangle with one correct dimension) B1 for horizontal line 1 cm from top) SC B2 for completely correct elevation on its side B2 for perspective drawing showing slant face and cutout B1 for perspective drawing with either slant face cutout omitted
26	(a) (b)	$20 \times 2 \text{ or } \frac{20}{30} \times 60 \text{ or } 20 \div \frac{1}{2}$ $\frac{20}{60} \text{ or } \frac{1}{3} \text{ or } 20 \text{ minutes}$	40 line from (45, 20) to (65, 0)	2	M1 for 20×2 or $\frac{20}{30} \times 60$ or $20 \div \frac{1}{2}$ A1 cao M1 for $\frac{20}{60}$ or $\frac{1}{3}$ or 20 minutes seen A1 for correct line SC If M0, B1 for line from (45, 20) to (<i>t</i> , 0) where <i>t</i> > 45 or B1 for a line of the correct gradient.

No	Working	Answer	Mark	Notes
(a)		7	1	B1 cao accept 0.07
		$\overline{100}$		
(b)		0.18	1	B1 cao
(c)	20 in 100 oe	40	2	M1 for sight of 20 in 100 or 20×2
				Al cao
(a)		6cm	2	B1 for 6 ± 0.2 or 60 ± 2
				B1 indep for cm or mm consistent with 1 st B1
(b)		At centre	1	B1 within overlay
(c)		Circle drawn	1	B1 all within overlay
		See diagram	3	B3 all correct – see separate sheet
				(B2 for 3 correct
			1	B1 for 2 correct)
(a)		$\frac{1}{-}$ oe	1	B1 cao
		4		
(b)		0.75	1	B1 cao
(c)		75%	1	B1 cao
(d)(i)		9	2	B1 accept answer in range 9 - 9.2
(ii)		15 - 16		B1 accept answers in range15 - 16
(a)		9:30	1	B1 cao
(b)		01 45		B2 for 2hr 45 min or 2 $\frac{3}{4}$ hr or 165 minutes
		2hrs 45 min	2	4 HIGH 105 HIM 012
				B1 2:45 or 2.45 or 165 or 45min + 1hr + 1hr oe
(c)		17	1	B1 cao
(a)	96 × 4	3.84	2	M1 for 96×4 or digits 384
(u)		5.01	_	A1 cao
(b)	$3 \times 96 + 40 = 328$	(0).56	2	M1 for $3 \times 96 + 40$ or digits 328 or digits 56
. /				A1 cao accept 56p

No	Working	Answer	Mark	Notes
7 (a)		54 000	1	B1 cao accept 54 thousand
(b)		50 000	1	B1 (accept ten thousand or 10 000) oe
8 (a)		14	1	B1 cao
(b)		6	1	B1 cao
(c)		Correct reflection	2	B2 fully correct
				(B1 correct reflection in a line parallel to the mirror line or condoning 1 block error in shape or position of shape)
9 (a)		Missing horiz label	2	B1
		1 (and 6) missing on vertical scale		B1
(b)		Correct graph	2	B1 for bar up to 4 for yellow
				B1 for bar up to 2 for green
(c)		Blue	1	B1 cao
(d)	3 + 5 + 4 + 2	14	1	B1 ft from (b)
(e)		3	1	B1 ft on '14'
		$\frac{3}{14}$		
10	Barry (8) because you double		2	B1 oe
	Kath (7) because you add, 1,2,3			B1 oe
				SC: B1 for correct rules only
11 (a)		2 <i>n</i>	1	B1 for 2 <i>n</i> or $n + n$ OR $2 \times n$ OR $n \times 2$ OR $n2$
(b)		2n + 15	1	B1 for " $2n$ " + 15 oe
(c)		20q	1	B1 cao
12 (a)	1 + 3 + 5 + 8 + 5	22	2	M1 add frequencies
				A1 cao
(b)		No, is>no of cups of	1	B1 'average cannot be bigger than 6' oe OR
		coffee in the table		'Average must be less than 6 oe'
13 (a)		Trapezium	1	B1 cao ignore spelling
(b)		(2, 3)	1	B1 cao
(c)		Isosceles	1	B1 cao ignore spelling
(d)		Q correct	1	B1 cao

Pap	Paper 5502					
	No	Working	Answer	Mark	Notes	
14	(a)		250 000	1	B1 cao	
	(b)	$\frac{28}{4}$	7	2	M1 for $\frac{28}{4}$ oe or "250000" × 28	
					A1 cao	
					SC B1 for 7 000 000	
15	(a)		10	1	B1 cao	
	(b)		5.5	1	B1 ± 0.3 pounds	
	(c)	$\frac{110}{22}$	50	3	M1 for use of graph at 11 or $\frac{110}{22}$	
					A1 for 5	
					A1 cao	
					SC B2 for 49.5 – 50.6	

-	1	No Working Answer Mark Notes						
No	Working	Answer	Mark	Notes				
6 (a)	269.30 - 56.80 = 212.50	6	2	M1 for $\frac{269.30 - 56.80}{269.30 - 56.80}$ or 5 seen				
	212.50			$\frac{1}{42.50}$ or 5 seen				
	42.50			A1 cao				
(b)		255.83 or 255.84	3	M1 for (5 ÷ 100) × 269.30				
	£269.30 - "£13.465"			M1 for 269.30 – "13.465"				
				A1 cao				
	95 260 20			95 060 00				
	OR $\frac{95}{100} \times 269.30$			OR M2 for $\frac{95}{100} \times 269.30$				
	100			A1 cao				
				Alternative Method:				
				M1 for $\frac{5}{100} \times 56.80 \ (= 2.84)$				
				and $\frac{5}{100} \times 42.50 \ (=2.12(5))$				
				(<u>OR</u> 53.96 <u>AND</u> 40.38 (40.375) seen				
				M1 for 56.80 - "2.84" (= 53.96)				
				42.50 - "2.12(5)" (= 40.375 or 40.38)				
				"5" × "40.375" + "53.96"				
				A1 cao				
1	$4.1^2 \times 1.07 = 16.81 \times 1.07$	17.9867	2	M1 for ("4.1") followed by squaring, or sight of 16.81				
				A1 cao				
				SC: B1 for 18 or better with no working				
8 (a)		60	1	B1 cao				
(b)	360 - 60 - 90 - 90	120	2	M1 for 360 – " 60 " – 90 – 90 or 180 – "60"				
				A1 cao				
(c)	6×2	12	2	M1 for 6×2				
				A1 cao for 12				

Pap	Paper 5502						
	No	Working	Answer	Mark	Notes		
19	(a)(i)	$240 \times 5 = 1200$	1250	3	B1 cao 1250		
	(ii)	50	1		$M1 \operatorname{cao} \frac{50}{50}$		
		<u>'1250'</u>	$\frac{1}{25}$		M1 cao $\frac{30}{1250'}$		
					A1 for $\frac{1}{25}$ in its simplest form		
	(b)	$\frac{60}{60} \times 1000 = 600$	12:5	3	M1 for $\frac{60}{1000} \times 1000$ oe		
		100			100		
					A1 for 600		
					A1 cao		
20	(a)		x + 2	1	B1 accept $2 + x$ but not $x = x + 2$		
	(b)	x + 5 + x + 5 + x + 2 + x + 2	4x + 14	2	M1 adding 4 sides, two of which are ' x + 2' (all sides to		
					be linear expressions in x)		
					SC $x + 5 + x + 2 \times 2$ gets M1		
					A1 for correct simplified answer or $(20 - 14) \div 4$ oe gets		
					M1		
	(c)	4x + 14' = 20	1.5 oe	2	M1 for equation		
				-	A1 cao		
21		$\Sigma f = 90$	Angles drawn,	3	M1 for 1 person = 4° or one angle correct in table or pie		
			labelled		chart		
					A1 any 2 correctly drawn angles in pie chart		
22	(a)		2	2	A1 fully correct chart labelled		
<i>LL</i>	(a)		2p-q	2	B1 cao for $2p$ B1 cao for a cocont $(a+2n)$ $2n$ 1 a and $2n + a$		
	(\mathbf{b})	5x = 3 + 4	1.4	2	B1 cao for $-q$ accept $(-q + 2p)$, $2p - 1q$ and $2p + -q$ M1 for either $(+2)$ or eight of 7) or $(+5)$ or eight of 0.8		
	(0)	$J_{\lambda} = J + 4$	1.4		M1 for either (+3 or sight of 7) or (÷ 5 or sight of 0.8 and 0.6)		
					A1 cao accept $\frac{7}{5}$ or $1\frac{2}{5}$		
					5 5		

Paper 5502						
No	Working	Answer	Mark	Notes		
23 (a)		$\frac{4 \times 5}{2}$	1	B1 cao		
(b)	1 + 2 + 3 + 4 + 5 + 6 + 7 + 8	8×9	1	B1 cao		
(c)	$\frac{100\times101}{2}$	$\frac{2}{5050}$	1	B1 cao		
24	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	See working	3	B1 for stem 0, 1, 2, 3 or 0, 10, 20, 30 B1 for accurate unordered leaves condone 1 error or omission B1 for key and ordered leaves all correct		
25	$3.2 \times 2.8 = 8.96$ $2 \times 4.5 \times 2.8 = 25.2$ $2 \times 4.5 \times 28.8 = 28.8$ $\frac{62.96}{2.5} \times 2.99$	£75.30	5	M1 for area of any face found correctly M1 for 2 areas found correctly A1 for 62.96 or 54 M1 for $\frac{62.96'}{2.5} \times 2.99$ A1 cao Alternate method for candidates who round up $\frac{"62.92"}{2.5}$ M1 for "26" × 2.99 A1 for £77.74 cao SC: for top included B2 for 71.92 m ² seen or B3 for £86.02 seen SC B4 for £64.58 or £65.78 seen		
26	2.5 × 10 000	25 000	2	$\begin{array}{c} \text{M1 for } 2.5 \times 100 \times 100 \\ \text{A1 cao} \end{array}$		

	No	Working	Answer	Mark	Notes
1	(a)(i)		8 <i>g</i>	2	B1 oe
	(ii)		10 <i>rp</i>		B1 for 10 <i>pr</i> or 10 <i>rp</i>
	(b)		10 <i>y</i> – 15	1	B1 cao accept $10y - +15$
	(c)	6x + 8 - 12x + 15	-6x+23	2	M1 for 3 correct terms out of 4
					A1 cao
2			m = 6n	2	B2 for $m = 6n$ oe accept $6 \times n$, $n 6$
					(B1 for $6n$ alone, or $6n + 1$ oe OR m = multiple of n
					except $m = n$)
3	(i)		0.067, 0.56, 0.6,	1	B1 cao Ignore trailing zeros
			0.605, 0.65		
	(ii)		-10, -6, -4, 2, 5	1	B1 cao
	(iii)		2 1 2 3	2	B2 all four correct
	, í		$\frac{1}{5}, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}$		(B1 any three in correct order)
			5 2 5 4		SC: B1 all 4 in reverse order
4			7	3	B3 all correct
			5		(B2 for 4, 5 or 6 correct entries)
			5 13 33		(B1 for 2, 3 correct entries)
			52 23		

Paper 550)3			
No	Working	Answer	Mark	Notes
5		2	3	M1 for 3 rows (9 squares) shaded
		$\frac{2}{3}$		M1 for 2 columns (10 squares) shaded A1
	OR	2		
		$\frac{2}{3}$		M1 for $\frac{3}{5} = \frac{9}{15}$
	$\frac{3}{5} = \frac{9}{15}$	5		5 15
				2 10
	$\frac{2}{3} = \frac{10}{15}$			M1 for $\frac{2}{3} = \frac{10}{15}$
	Therefore $\frac{2}{3} > \frac{3}{5}$			A1
	OR	2		M1 for $\frac{3}{5} = 0.6$ or percent
	$\frac{3}{5} = 0.6$ or percent	$\frac{2}{3}$		M1 for $-=0.6$ or percent
	$\frac{-}{5} = 0.6$ or percent	5		
	2			M1 for $\frac{2}{3} = 0.66$ or 0.67 or better
	$\frac{2}{3} = 0.66$ or 0.67 or better			A1
	-			
	Therefore $\frac{2}{3} > \frac{3}{5}$			
5	$2 \times 29 = 58$	30.2	3	M1 for freq \times no. pins (at least 3)
	$5 \times 30 = 150$			M1 for totalling and for $\div 10$
	$2 \times 31 = 62$			(dep on 1 st M1)
	$1 \times 32 = 32$			
	$\frac{302}{10} = 30.2$			A1 cao
	$\frac{10}{10} = 30.2$			
7 (a)			2	B1 for 180° rotation (wrong centre)
				B1 cao
(b)			3	B1 for any enlargement sf other than 1
				B1 for all sides halved
				B1 for position

Paper 5503	Paper 5503						
No	Working	Answer	Mark	Notes			
9 9	Working $\frac{1}{3} + \frac{1}{4} = \frac{4}{12} + \frac{3}{12} = \frac{7}{12}$ $1 - \frac{7}{12} = \frac{5}{12}$ OR $1 - \frac{1}{3} = \frac{2}{3}, 1 - \frac{1}{4} = \frac{3}{4}$ $\frac{9}{12} - \frac{4}{12} = \frac{5}{12}, \frac{8}{12} - \frac{3}{12} = \frac{5}{12}$	$ \begin{array}{c c} \hline 12x \\ \hline 12x + 10y \\ \hline \hline 5 \\ \hline 12 \end{array} $	3	Notes B1 oe B2 oe or ft from (a) (B1 for $12x + a$ multiple of y or 10y seen) SC B1 for $x = 12x + 10y$ or $y = 12x + 10y$ M1 for $\frac{4}{12}$ and $\frac{3}{12}$ oe A2 for $\frac{5}{12}$ oe (A1 for getting $\frac{7}{12}$) (B1 for $1 - \frac{"1}{3} + \frac{1"}{4}$ correctly evaluated) OR B1 for $\frac{2}{3}$ or $\frac{3}{4}$ seen M1 for $\frac{3}{4} - \frac{1}{3} = \frac{9}{12} - \frac{4}{12}$ or $\frac{2}{3} - \frac{1}{4} = \frac{8}{12} - \frac{3}{12}$ A1 for $\frac{5}{12}$ oe			
10 (a) (b)(i)	180 - (54 +54)	54 72	1 3	OR M1 0.25 and 0.33 or better A1 for 0.58 or better A1 for 0.416 <i>recurring</i> B1 cao M1 for 180 – ("54" + "54")			
(ii)				A1 for 72° ft from (a) if $x < 90^{\circ}$ B1 for mentioning isosceles and equal or base angles or equal sides and equal or base angles			

Pap	Paper 5503						
	No	Working	Answer	Mark	Notes		
11	(a)	Bryani was correct $4 \times 3^2 = 4 \times 9 = 36$	Bryani	2	M1 for 4×9 or $4 \times 3 \times 3$ or "square the three/x then multiply by four" A1 Bryani SC 4×3^2 with Bryani gets B2		
	(b)			1	B1 cao		
12	(a) (b)			3	 B2 for rectangle height 4 squares, base 3 squares (B1 for rectangle with one correct dimension) B1 for line 1 square from the top SC B2 for completely correct elevation on its side B2 for perspective drawing showing slant face and cut out (B1 for perspective drawing with either slant face or cut out omitted or one aspect incorrect) 		
13	(a)	$20 \times 2 \text{ or } \frac{20}{30} \times 60 \text{ or } 20 \div \frac{1}{2}$	40	2	M1 for 20 × 2 or $\frac{20}{30}$ × 60 or 20 ÷ $\frac{1}{2}$ A1 cao		
	(b)	$\frac{20}{60}$ or $\frac{1}{3}$ or 20 minutes seen	Line from (45, 20) to (65, 0)	2	M1 for $\frac{20}{60}$ or $\frac{1}{3}$ or 20 minutes seen A1 for correct line SC If M0, B1 for line from (45, 20) to (<i>t</i> , 0) where <i>t</i> > 45 or a line of the correct gradient		
14	(i)		119.31	3	B1 cao		
	(ii)		119 310		B1 cao		
	(iii)		1.23		B1 cao		

Paper 550	3			
No	Working	Answer	Mark	Notes
15	$\frac{10}{100} \times 12000$ $12\ 000 - 1200 = 10\ 800$ $\frac{10800}{10} = 1080$ $10\ 800 - 1080 = \text{\pounds}9720$	£9720	3	M1 for $\frac{10}{100} \times 12000$ or sight of 1200 or 2400 or 10 800 or 9600 M1 (dep) for $\frac{10}{100} \times (12\ 000 - \frac{10}{100} \times 12000)$ or sight of 1080 A1 cao Alternative mark scheme M2 for $12000 \times (1 - \frac{10}{100})^2$ (M1 for $12000 \times (1 - \frac{10}{100})$ A1 cao
16 (a)	2p = 6	<i>p</i> = 3	2	M1 for $7p - 5p = 8 - 2$ or $2p$ or 6
(b)	7r - 5r = -20 - 2	-11	2	A1 cao M1 for $7r + 2 = 5r - 20$ or $\frac{7r}{5} + \frac{2}{5} = r - 4$ or 7r 2
				$7r - 5r = 20 - 2$ or $\frac{7r}{5} - r = -4 - \frac{2}{5}$ A1 cao
17		5n + 1	2	B2 oe (B1 for $5n$ seen) NB: $n = \text{gets B1 max}$

Pap	Paper 5503						
	No	Working	Answer	Mark	Notes		
18	(a)	-1, 0, 1		2	B2 for -1, 0, 1		
					(B1 for -1, 0 or 0,1 or -1,1 or -2, -1, 0, 1 only)		
	(b)	(-1, -1), (0, -1), (1, -1), (0, 0),		3	B3 for 6 points correct		
		(1,0),(1,1)			B2 for 3 points correct		
					B1 for 1 point correct		
					NB –B1 each additional point over six		
19	(a)	Triangle with vertices at $(0,0)$ $(0,-2)$ a	and (3,0)	2	M1 for correct orientation 3		
					A1 cao $2\square$		
	(b)	Rotation, 18	30° , centre (0,1)	2	B2 for 180° 'rotation' centre $(0, 1)$		
		Enlargement sf	- 1 centre (0,1)		B2 for Enlargement sf - 1 centre $(0,1)$		
					(B1 for any two of the three parts)		
					NB: B0 if additional transformation is included		
20		Bisector of $\angle BAC$		3	B3 cao		
		Arc around A			(B2 for <u>either</u> two correct boundaries, no shading/ wrong		
		Region			shading or one correct boundary, one incorrect boundary		
					with valid shading)		
					(B1 for <u>either</u> two incorrect boundaries but one drawn		
					from A and one intersection, with valid shading <u>or</u> one		
					correct boundary)		
01			T	3	Ignore shading outside the triangle		
21			Length Volume	3	B1 for Length B1 for Volume		
			Area		B1 for Area		
22	(a)	Unbiased question with choices	Alca	2	B1 for unbiased question		
	(a)	Cholased question with choices		4	B1 for at least 2 choices		
	(b)			2	Classification 1: A biased question		
	(0)			-	Classification 2: A restricted sample of people		
					Classification 2: Not specifying a range of foods		
					Classification 4: Nothing to do with eating habits		
					B2 reasons which satisfy 2 different classifications		
					(B1 a reason which satisfies one classification)		

Pap	Paper 5503						
	No	Working	Answer	Mark	Notes		
23	(a)		4.8×10^{7}	3	M1 for $6 \times 10^a \times 8 \times 10^b$ oe, a and b integers including 0		
		48×10^{6}			A1 for 48×10^6 oe		
			•••••		A1 cao		
	(b)	200 000 + 30 000	230000	2	B2 cao		
					(B1 for sight of 200 000 or 30 000 or 2.3×10^5		
24			64	4	or 23×10^4) B1 cao		
24	(i)		3	4	B1 cao		
	(ii) (iii)		12		B1 cao B2 cao		
	(111)	$\sqrt{16 \times 9} = \sqrt{144}$	12				
					(B1 for sight of $\sqrt{2^4} \times \sqrt{9}$ or better, or 144 seen)		
25	(i)	Tangent 90° to diameter /radius/ line from	27°	4	B1 for 27° cao		
	<i>(</i>)	(through) centre			B1 for reason		
	(ii)		63°		B1 ft for 90–"27" if not 63°		
		180 – (90+ "27")			B1 for reason		
		angle in semicircle (is 90°)/Alternate segments /angle at centre twice at circumference					
26	(a)(i)	/angle at centre twice at circumierence	152	2	B1 cao		
20	(ii)		177	-	B1 cao		
	(h)		1 / /	3	B1 for median marked at 167		
	(0)			5	B1 ft for postion of box with its ends at "152" and "177"		
					B1 for position of whiskers with ends at 132 and 182		
					NB: For any points plotted between 141 and 149 give a		
					tolerance of an extra ± 1 square		
27		$x^2 + xy + xy + y^2$	$x^2 + 2xy + y^2$	2	M1 for at least 3 of the 4 terms correct		
					A1 cao		
			25	2	M1 for recognising $3.47 + 1.53 (= 5)$		
					A1 cao		

Paper	Paper 5504						
N	No	Working	Answer	Mark	Notes		
1 (a	(a)	$4.1^2 \times 1.07 = 16.81 \times 1.07$	17.9867	2	M1 for (4.1) followed by squaring, or sight of 16.81 A1 cao		
	(b)		$(1.6 + 3.8 \times 2.4) \times 4.2$	1	SC: B1 for 18 or better with no working B1 cao Allow additional brackets if they give an expression with value 45.024		
2	(a)	269.30 - 56.80 = 212.50	6	2	M1 for $\frac{269.30 - 56.80}{42.50}$ or 5 seen A1 cao		
	(b)	5% of £269.30 £269.30 – "£13.465"	255.83 or 255.84	3	M1 for $(5 \div 100) \times 269.30$ M1 (dep) for $269.30 - "13.465"$ A1 cao		
		OR $\frac{95}{100} \times 269.30$			OR M2 for $\frac{95}{100} \times 269.30$		
					A1 cao Alternative Method:		
					M1 for $\frac{5}{100} \times 56.80 \ (= 2.84)$		
					and $\frac{5}{100} \times 42.50 \ (=2.12(5))$		
					(<u>OR</u> 53.96 <u>AND</u> 40.38 (40.375) seen		
					M1 for 56.80 - "2.84" (= 53.96)		
					42.50 - "2.12(5)" (= 40.375 or 40.38) "5" × "40.375" + "53.96"		
					A1 cao		

Pap	Paper 5504						
	No	Working	Answer	Mark	Notes		
3	(a)		60	1	B1 cao		
	(b)	360 - 60 - 90 - 90	120	2	M1 for 360 – "60" – 90 – 90 or 180 – "60"		
	()		10	2	A1 cao		
	(c)	6×2	12	2	M1 for 6×2		
	(1)			2	A1 cao 12		
	(d)		Correct drawing	2	B2 for triangle and construction lines (see overlay)		
					(B1 for 1 line of length 4cm and correct arcs crossing OR for correct triangle with either no arcs or incorrect		
					arcs)		
					SC: B1 similar triangle drawn with construction lines		
4	a(i)	$240 \times 5 = 1200$	1250	3	B1 cao 1250		
	(ii)	50	1		50		
		1250	$\overline{25}$		M1 $\frac{50}{"1250"}$		
					A1 oe in its simplest form		
	(b)	$\frac{60}{100} \times 1000 = 600$	12:5	3	M1 for $\frac{60}{100} \times 1000$ oe		
		$\frac{100}{100} \times 1000 = 600$			$\frac{100}{100} \times 1000 \text{ oe}$		
					A1 for 600		
		600: 250			A1 cao		
5	(a)		<i>x</i> + 2	1	B1		
	(b)	x + 5 + x + 5 + x + 2 + x + 2	4x + 14	2	M1 adding 4 sides, two of which must be ' $x + 2$ ' (all		
					sides to be linear expressions in <i>x</i>)		
					A1 for correct simplified answer		
	(c)	4x + 14 = 20	1.5	2	M1 for equation " $4x + 14$ " = 20 OR $\frac{20 - 14}{4}$ oe		
					A1 cao		

Paper	Paper 5504						
Ν	0	Working	Answer	Mark	Notes		
6	(a)		2p-q	2	B1 cao for 2p		
					B1 cao for $-q$ accept $-q + 2p$ and $2p - 1q$		
	(b)	5x = 3 + 4	1.4	2	M1 for either (+3 or sight of 7) or (\div 5 or sight of 0.8		
					and 0.6)		
					A1 cao accept $\frac{7}{5}$ or $1\frac{2}{5}$		
7	(a)		4×5	1	B1 cao		
			2				
	(b)	1 + 2 + 3 + 4 + 5 + 6 + 7 + 8	$\frac{4\times 5}{2}$ $\frac{8\times 9}{2}$	1	B1 cao		
			$\overline{2}$				
	(c)	100×101	5050	1	B1 cao		
		$\frac{1}{2}$					
	(d)	2	n(n+1)	2	B2 cao		
	()		$\frac{n(n+1)}{2}$		(B1 for any quadratic in <i>n</i>)		
			_				
8		$3.2 \times 2.8 = 8.96$	75.30	5	M1 for area of any face found correctly		
		$2 \times 4.5 \times 2.8 = 25.2$			M1 for 2 areas seen		
		$2 \times 4.5 \times 3.2 = 28.8$			A1 for 62.96 or 54		
		$\frac{62.96}{2.5}$ × 2.99			M1 for $\frac{.62.96'}{2.5} \times 2.99$		
					A1 cao		
					Alternate method for candidates who round up $\frac{"62.96"}{2.5}$		
					M1 for "26" x 2.99		
					A1 for £77.74 cao		
					SC: for top included B2 for 71.92 m ² seen or		
					B3 for £86.02 or £86.71		
					SC: B4 for £64.58 or £65.78 seen		

Paper 550	Paper 5504					
No	Working	Answer	Mark	Notes		
9	2.5 × 10000	25000	2	M1 for 2.5 × 10000 or 2.5.× 100 ×100 A1 cao		
10 (a)	$\sum_{k=0}^{\infty} f = 90$ (88), 144, 32, 96	Angles drawn, labelled	3	M1 for 1 person = 4°or one angle correct in table or pie chart A1 any 2 angles correctly drawn in pie chart A1 fully correct chart labelled		
(b)	0.38 + 0.27 + 0.15	0.20	2	M1 1 – sum A1 cao		
11	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	See working column	3	B1 for stem 0, 1, 2, 3 or 0, 10, 20, 30 B1 for accurate unordered leaves condone 1 error or omission B1 for key and ordered leaves all correct		
12 (a)	Key 1 3 = 13 (min) $V = \pi \times 4^2 \times 10$	502 - 503	2	M1 for $\pi \times 4^2 \times 10$ A1 502 - 503		
(b)	$P^2 = 10^2 + 8^2$ $P = \sqrt{164}$	√164 < 13	3	M1 for sight of a correct right-angled triangle M1 for $10^2 + 8^2$ A1 for conclusion based on a correct calculation or 12.8 seen		
13 (a)	2 × 30	$2 \times 2 \times 3 \times 5$	4	M1 for systematic method, eg division, factor trees (at least one prime) A1 cao		
	2×48	$2^5 \times 3$		M1 for systematic method, eg division, factor trees (at least one prime) A1 cao		
(b)		12	1	B1 cao		
(c)	$2^5 \times 3 \times 5$	480	2	B2 cao B1 for $2^5 \times 3 \times 5$ or any correct common multiple		

No	Working	Answer	Mark	Notes
14 (a)		150 < C ≤ 200	2	M1 use of cum freq to find the cost of the 20 th or 20.5 th car OR $\frac{1}{2}\Sigma f$ or $\frac{1}{2}(\Sigma f + 1)$
(b)		No, because the 21 st value is in the	1	A1 eg 150 to 200 B1 20.5 th or 21 st in same interval or an alternative correc explanation
(c)	80% = 5200 $\frac{5200}{200} \times 100$	same interval 6500	3	M1 for $(100 - 20) \% = 5200$ M1 for $\frac{5200}{"80"} \times 100$
5 (a)	$80 = x^2(x+1) = 230$	AG	2	A1 cao M1 for $x \times x \times (x+1)$ or $x \times x \times x + 1$ oe
(b)		5.8	4	A1 cao from $x \times x \times (x + 1)$ B 2 for trial between 5.8 and 5.9 inclusive (B1 for different trial between 5 and 6 inclusive)
	5.1 - 158.7 5.2 - 167.6 5.3 - 177.0			B1 for different trial between 5.8 and 5.85 (not including 5.8) B1 (dep on at least one previous B1) cao for 5.8, 5.81,
	5.4 - 186.6 5.5 - 196.6			5.811
	5.6 - 207.0 5.7 - 217.7			
	5.8 - 228.8 5.9 -240.2			
	5.85 - 234.4			

Paper 550)4			
No	Working	Answer	Mark	Notes
16	$\pi \times \left(\frac{15}{2}\right)^2 = 176.715$	88.4cm ²	3	M1 for $\pi \times \left(\frac{15}{2}\right)^2$
				A1 88.3 – 88.4 B1(ind) for cm ²
17 (a)	5 = 0.5x + 1	8	2	M1 for $5 = 0.5x + 1$ A1 cao
(b)		$y = \frac{1}{2}x + c$	1	B1 $y = \frac{1}{2}x + c$, $c \neq 1$, oe
(c)		x = 2y - 2 OR $x = 2(y - 1)$	2	M1 for correctly multiplying both sides by 2 or correctly isolating $\frac{x}{2}$ A1 for $x = 2(y-1)$, $x = \frac{y-1}{0.5}$, $x = \frac{y-1}{\frac{1}{2}}$ oe SC: B1 for $x = 2y-1$
18	4x - 6y = 22 15x + 6y = 54 19x = 76	x = 4, y = -1	4	M1 for coefficients of x or y the same followed by correct operation, one arithmetical error A1 cao M1(dep on previous M mark) for sub for other variable A1 cao Trial and improvement -0 unless both x and y correct values found

Pape	Paper 5504					
]	No	Working	Answer	Mark	Notes	
19	(a)	$SF = \frac{10}{6}$ $\frac{10}{6} \times 4.8 = 8$	8	2	M1 for sight of $\frac{10}{6}$ or $\frac{6}{10}$ or 1.67 or better or $\frac{CD}{10} = \frac{4.8}{6}$ A1 cao	
	(b)	$\frac{10}{6} \times 4.5 - 4.5 = 3$	19.8	2	M1 for use of SF from (a) to find <i>BC</i> or <i>AC</i> and adding 4 sides A1 cao	
20		$\frac{6 \times 10^{15}}{3.2 \times 10^8}$ 1.875 × 10 ⁷	4.3×10 ³	3	B3 for 4.3×10^3 to 4.34×10^3 (B2 for 1.875×10^7 oe or 4300 to 4340 or final answer of 1.9×10^7) (B1 for sight of 6×10^{15} oe or 3.2×10^8 oe)	
21		$8.5 \times \tan 38 = 8.5 \times 0.7813$	6.64	3	M1 for correct use of trig, eg tan $38 = \frac{opp}{8.5}$ M1 for $8.5 \times tan 38$ A1 $6.64 - 6.641$	

Paper 5504					
	No	Working	Answer	Mark	Notes
22	(a)		No, as you would expect about 100. Yes, as it is possible to get 200 sixes with a fair dice	1	B1 for a consistent answer
	(b)	$\frac{1}{6}, \frac{5}{6}$ + labels		3	B1 for $\frac{5}{6}$ on the red dice, <i>not six</i> branch B1 for a fully complete tree diagram with all branches labelled B1 for $\frac{1}{6}$, $\frac{5}{6}$ on all remaining branches as appropriate

No		Paper 5505						
	Working	Answer	Mark	Notes				
1 (i)		119.31	3	B1 cao				
(ii)		119310		B1 cao				
(iii)		1.23		B1 cao				
2	$\frac{10}{100} \times 12000 = 1200$ 12 000 - 1200 = 10 800 10 800 ÷ 10 = 1080 10 800 - 1080 = £9720	9720	3	M1 for $\frac{10}{100} \times 12\ 000$ or sight of 1200 or 2400 or 10 800 or 9600 M1 (dep) for $\frac{10}{100} \times (12\ 000 - \frac{10}{100} \times 12\ 000)$ or sight of 1080				
				A1 cao Alternative markscheme M2 for $12000 \times \left(1 - \frac{10}{100}\right)^2$				
				(M1 for $12000 \times \left(1 - \frac{10}{100}\right)$) A1 cao				
3	7r - 5r = -20 - 2	-11	2	M1 for $7r + 2 = 5r - 20$ or $\frac{7r}{5} + \frac{2}{5} = r - 4$ or $7r - 5r = -20 - 2$ or $\frac{7r}{5} - r = -4 - \frac{2}{5}$ A1 cao				

Pa	Paper 5505					
	No	Working	Answer	Mark	Notes	
4	(a)		-1, 0, 1	2	B2 for -1, 0, 1 only	
					(B1 for -1, 0 or 0,1 or -1, 1 or -2, -1, 0, 1 only)	
	(b)	(-	-1,-1)(0,-1)	3	B3 for 6 points correct	
			,-1) (0, 0)		(B2 for 3 points correct)	
			(1, 0)(1, 1)		(B1 for 1 point correct)	
		Ň	, , , , ,		NB: –B1 for each additional point over six	
5			5 <i>n</i> + 1	2	B2 oe	
					(B1 for $5n$ seen)	
					NB: $n = \text{gets B1 max}$	
6	(a)	Triangle with vertices at $(0,0)$ $(0,-2)$ and	d (3,0)	2	M1 for correct orientation 3	
					A1 cao	
	(b)			2	B2 for 180° 'rotation' centre $(0, 1)$ or for Enlargement of 1 centre $(0, 1)$	
		Enlargement sf –	-1 centre $(0,1)$		for Emargement sr - 1 centre (0,1)	
					(B1 for any two of the three parts)	
					NB: B0 if additional transformation is included	
7			See overlay	3	B3 cao	
		Arc around A			(B2 for <u>either</u> two correct boundaries, no shading/ wrong	
		Region			shading or one correct boundary, one incorrect boundary	
					with valid shading)	
					(B1 for <u>either</u> two incorrect boundaries but one drawn	
					from A and one intersection, with valid shading <u>or</u> one	
					correct boundary)	
0			т (1	2	Ignore shading outside the triangle	
8			Length	3	B1 for Length	
			Volume		B1 for Volume	
			Area		B1 for Area	

Pap	Paper 5505						
	No	Working	Answer	Mark	Notes		
9	(a)	Unbiased question with choices		2	B1 for unbiased question B1 for at least 2 choices		
	(b)	Leading question and a restricted sample		2	Classification 1: A biased question Classification 2: A restricted sample of people Classification 3: Not specifying a range of foods Classification 4: Nothing to do with eating habits B2 reasons which satisfy 2 different classifications (B1 a reason which satisfies one classification)		
10	(a)	$ \frac{6 \times 10^2 \times 8 \times 10^4}{48 \times 10^6} = 4.8 \times 10^7 $	4.8×10^{7}	3	M1 for $6 \times 10^{a} \times 8 \times 10^{b}$ oe, <i>a</i> and <i>b</i> integers including 0 A1 for 48×10^{6} oe A1 cao		
	(b)	200 000 + 30 000 = 230 000	230 000	2	B2 cao (B1 for sight of 200 000 or 30 000 or 2.3×10^5 or 23×10^4)		
11	(a)	$x^2 + xy + xy + y^2$	$x^2 + 2xy + y^2$	2	M1 for at least 3 of the 4 terms correct A1 cao		
	(b)		25	2	M1 for recognising $3.47 + 1.53 (= 5)$ A1 cao		
12	(i) (ii)	Tangent 90° to diameter /radius/ line from (through) centre 180 –(90+ "27") angle in semicircle (is 90°)/Alternate segments /angle at centre twice at circumference	27° 63°	4	B1 for 27° cao B1 for reason B1 ft for 90–"27" if not 63° B1 for reason		
13	(i) (ii)		p^9 $6q^6$	1 2	B1 cao B2 for $6q^6$ (B1 for sight of $\frac{6q^9}{q^3}$ or $3q \times 2q^5$ or $3q^4 \times 2q^2$ or $6 \times q \times q \times q \times q \times q \times q \times q$ or final answer of the form kq^6 , $k > 0$)		

Paper	r 5505	3			
Ν	No	Working	Answer	Mark	Notes
14 ((a)(i)		152	2	B1 cao
	(ii)		177		B1 cao
	(b)			3	B1 for median marked at 167
					B1 ft for postion of box with its ends at "152" and "177"
					B1 for position of whiskers with ends at 132 and 182
					NB: For any points plotted between 141 and 149 give a
					tolerance of an extra ± 1 square
15		$(\operatorname{arc} =) \frac{40}{360} \times 2\pi \times 9$	$2\pi + 18$	4	M1 for $\frac{40}{360} \times$
		$=2\pi$			M1 for $2\pi \times 9$
					M1 (dep) for $\frac{40}{360} \times 2\pi \times 9$ oe
					A1 for $\frac{18 \times \pi}{9}$ + 18 oe exact form
16	(i)		1	1	B1 cao
	(ii)		1	1	B1 cao accept 0.0625
			$\overline{16}$		
	(iii)		64	1	B1 cao condone ± 64

Paper 550	5			
No	Working	Answer	Mark	Notes
17 (a)	$F \propto 1/x^{2}$ $F = k/x^{2}$ $4 = k / 3^{2}$ $F = 36/x^{2}$	$F = \frac{36}{x^2}$	3	M1 for $F = k/x^2$ seen or implied. $(k \neq 1)$ M1 (dep) for subst. or sight of $k = 36$ A1 for $F = 36/x^2$
(b)		9	1	B1 ft for 9 (ft on $F = kx^n$, $n \neq 0$)
(c)	$64 = \frac{36}{x^2}$ $x^2 = \frac{36}{64}$ $x = \pm \frac{3}{4}$	$\frac{6}{8}$	2	M1 for $x^2 = \frac{"36"}{64}$ A1 for $\frac{6}{8}$ oe (condone \pm) SC: Use of $F = kx^2 \max M1 M1 A0 B1$ ft M0 A0 SC: Use of $F = \frac{k}{\sqrt{x}}$ max M1 M1 A0 B0 M1 ($\sqrt{x} = \frac{4\sqrt{3}}{64}$) A0
18	$ \frac{(5+\sqrt{3})(5-\sqrt{3})=5\times5-5\sqrt{3}+5\sqrt{3}-\sqrt{3}\sqrt{3}}{=5\times5-3} \\ \frac{22}{\sqrt{22}}=\frac{22\sqrt{22}}{22} $	√22	3	B1 for correct expansion $25 - 5\sqrt{3} + 5\sqrt{3} - \sqrt{3}\sqrt{3}$ with 1 st three terms reducing to 25 without any errors seen B1 (indep) for $\sqrt{3}\sqrt{3} = 3$ B1 for $\sqrt{22}$ coming from $\frac{22}{\sqrt{22}}$ (S.C $\frac{(5+\sqrt{3})(5-\sqrt{3})\sqrt{22}}{22}$ gets B1)

Paper 550	5			
No	Working	Answer	Mark	Notes
19 (a)		60 40	2	B1 cao B1 cao
(b)		correct bars	2	B1 for $30 < x \le 40$ with an area of $2\frac{1}{2}$ squares B1 for $40 < x \le 70$ with an area of 3 squares SC: $\frac{0}{4}$ give M1 if clearly using area or frequency density
20 (a)	6x + 8 - 12x + 15	-6x + 23	2	M1 for 3 of the 4 terms $6x$, $+8$, $-12x$, $+15$ correct A1 cao
(b)		$32x^5y^{15}$	2	B2 cao (B1 for two of 32, x^5 , y^{15})
(c)	$\frac{(n+1)(n-1)}{n+1} \times \frac{2}{n-2}$ $\frac{2(n-1)}{n-2}$	$\frac{2(n-1)}{n-2}$	3	M1 for $k(n + 1) (n - 1)$ M1 dep for $\frac{(n+1)(n-1)}{(n+1)} = n - 1$ A1 for $\frac{2(n-1)}{n-2}$
21	Vertices at $(-3, -1\frac{1}{2}), (-4\frac{1}{2}, -1\frac{1}{2}), (-3, -4\frac{1}{2})$		3	B1 for all sides ×1½ B1 for correct orientation with 2 vertices almost correct B1 cao

No	Working	Answer	Mark	Notes
2	$\begin{aligned} & \text{Total} = 3 + 5 + 2 \ (=10) \\ & \frac{3}{10} \times \frac{3}{10} \times \frac{5}{10} \left(= \frac{45}{1000} \right), \frac{3}{10} \times \frac{3}{10} \times \frac{2}{10} \left(= \frac{18}{1000} \right) \\ & \frac{5}{10} \times \frac{5}{10} \times \frac{3}{10} \left(= \frac{75}{1000} \right), \frac{5}{10} \times \frac{5}{10} \times \frac{2}{10} \left(= \frac{50}{1000} \right) \\ & \frac{2}{10} \times \frac{2}{10} \times \frac{3}{10} \left(= \frac{12}{1000} \right), \frac{2}{10} \times \frac{2}{10} \times \frac{5}{10} \left(= \frac{20}{1000} \right) \end{aligned}$	$\frac{660}{1000}$ oe	5	M3 for all six expressions seen OR their combined equivalents (M2 for four expressions seen OR their combined equivalents) (M1 for two expressions seen OR their combined equivalents)
	$3 \times \left(\frac{"45"}{1000} + \frac{"18"}{1000} + \frac{"75"}{1000} + \frac{"50"}{1000} + \frac{"12"}{1000} + \frac{"20"}{1000}\right)$ $\frac{660}{1000}$			M1 sum of 18 relevant products condone 1 slip A1 for $\frac{660}{1000}$ oe <i>SC: without replacement maximum M4 A0</i> SC: Just 2 beads: Answer either $\frac{38}{100}$ oe OR $\frac{28}{90}$ oe H

No	No Working	Answer	Mark	Notes
23 (a)	(a)(i)	6 b – 6 a	2	B1 for $6\mathbf{b} - 6\mathbf{a}$ oe
	(ii)	6 a		B1 for 6 a oe
	(b) $\overrightarrow{EX} = \overrightarrow{EB} + \overrightarrow{BX}$ = 12b + $\frac{1}{2}$ \overrightarrow{BC}	12 b – 3 a	2	M1 for $\overrightarrow{EX} = \overrightarrow{EB} + \overrightarrow{BX}$ oe vector journey in a form ready for straightforward substitution A1 for $12\mathbf{b} - 3\mathbf{a}$ oe
	(c) $\overrightarrow{AY} = \frac{5}{3} \overrightarrow{AB}$ or $\overrightarrow{BY} = \frac{2}{3} \overrightarrow{AB}$ $\overrightarrow{EY} = 16\mathbf{b} - 4\mathbf{a}$ or $\overrightarrow{XY} = 4\mathbf{b} - \mathbf{a}$	Printer Answer	3	B1 for either $\overrightarrow{AY} = \frac{5}{3}\overrightarrow{AB}$ or $\overrightarrow{BY} = \frac{2}{3}\overrightarrow{AB}$ oe B1 ft for either $\overrightarrow{EY} = 16\mathbf{b} - 4\mathbf{a}$ or $\overrightarrow{XY} = 4\mathbf{b} - \mathbf{a}$
	$EY = 16\mathbf{D} - 4\mathbf{a}$ or $XY = 4\mathbf{D} - \mathbf{a}$			B1 ft for either $EY = 16\mathbf{b} - 4\mathbf{a}$ or $XY = 4\mathbf{b} - \mathbf{a}$ ft only on parts (<i>a</i>) and (<i>b</i>)
	$\vec{EY} = 4 \vec{XY}$ or $\vec{EX} = 3 \vec{XY}$ or $\vec{EY} = \frac{4}{3} \vec{EX}$			B1 for either $\vec{EY} = 4 \vec{XY}$ or $\vec{EX} = 3 \vec{XY}$ or $\vec{EY} = \frac{4}{3} \vec{EX}$
	3			oe plus conclusion of E , X , Y on the same straight line
- (a)	(a)(i)	(5, -4)	4	B1 cao
	(ii)	(2, -9)		B1 cao
	(iii)	(2, 4)		B1 cao
	(iv) (b)	(1, -4) $(x-2)^2 - 4$	4	B1 cao
	(b)	$(x-2)^2 - 4$	4	B4 for $(x-2)^2 - 4$ oe eg. $x^2 - 4x$
				(B3 for $(x+2)^2 - 4$ or $(x-2)^2 + 4$)
				(B2 for $x^2 - 4$ or $(x - 2)^2$ OR $x^2 + bx$, $b \neq 0$ OR
				$(x+2)^2 + 4 \text{ OR } f(x-2) - 4$)
				(B1 for $x^2 + 4$ or $(x + 2)^2$ or $ax^2 + bx$ or $x^2 + bx + c$
				OR $x - 2 - 4$ or $x^2 - 2 - 4$, $a, b, c \neq 0$)

No	Working	Answer	Mark	Notes
1 (a) $V = \pi \times 4^2 \times 10$	$502 - 503 \text{ cm}^3$	2	M1 for $\pi \times 4^2 \times 10$
				A1 502 – 503
(b	$P^{2} = 10^{2} + 8^{2}$ $P = \sqrt{164}$	$\sqrt{164} < 13$	3	M1 for sight of correct right angled triangle
	$P = \sqrt{164}$			M1 for $10^2 + 8^2$
				A1 for conclusion based on a correct calculation
				Or 12.8 seen
2 (a)(i) 2×30	$2 \times 2 \times 3 \times 5$	4	M1 for systematic method, eg division, factor trees (at
				least one prime)
				A1 cao
(ii) 2×48	$2^5 \times 3$		M1 for systematic method, division, factor trees (at least one prime)
				A1 cao
(b)	12	1	B1 cao
(c		480	2	B2 cao
()				B1 for $2^5 \times 3 \times 5$ or any correct common multiple

Pap	Paper 5506					
	No	Working	Answer	Mark	Notes	
3	(a)		$150 < C \le 200$	2	M1 use of cum freq to find the cost of the 20 th or 20.5 th	
					car	
					OR $\frac{1}{2}\Sigma f^{\text{th}}$ or $\frac{1}{2}(\Sigma f+1)^{\text{th}}$ car.	
					A1 eg 150 to 200, 150 – 200	
	(b)		No, because the	1	B1 for 20.5 th or 21 st value in the same internal consistent	
			21 st value is in		with 'a'	
			the same		OR	
			interval		Refers to the median value being low in the interval	
					(statement to be mathematically correct)	
		900/-5200	(500	2	See additional sheet $M1.6m(100 - 200)(-5200)$	
	(c)	80% = 5200	6500	3	M1 for $(100 - 20)\% = 5200$	
		$\frac{5200}{80} \times 100$			M1 for $\frac{5200}{"80"} \times 100$	
					A1 cao	

No	Working	Answer	Mark	Notes
(a)	$x^2(x+1) = 230$	AG	2	M1 for $x \times x \times (x+1)$ or $x \times x \times x+1$ oe, $x^2(x+1)$, $x^2 \times x+1$
(b)	5 - 150 6 - 252	5.8	4	A1 cao from $x \times x \times (x+1)$, no need to see 230
	5.1 – 158.7			B2 for trial between 5.8 and 5.9 inclusive evaluated
	5.2 - 167.6			(B1 for trial between 5 and 6 inclusive evaluated)
	5.3 – 177.0			B1 for different trial between 5.8 and 5.85 (not including 5.8)
	5.4 - 186.6			B1 dep on at least are previous B1 5.8, 5.81, 5.811
	5.5 – 196.6			
	5.6 - 207.0			
	5.7 – 217.7			
	5.8 - 228.8			
	5.9 - 240.2			
	5.85 - 234.4			
5	$\pi \times \left(\frac{15}{2}\right)^2 = 176.715$	88.4 cm ²	3	M1 for $\pi \times \left(\frac{15}{2}\right)^2$ seen
				A1 $88.3 - 88.4$ B1 for cm ² (independent)

Paper 550	5			
No	Working	Answer	Mark	Notes
6 (a)	5 = 0.5x + 1	8	2	M1 for $5 = 0.5x + 1$ A1 cao
(b)		$y = \frac{1}{2}x + c$	1	B1for $y = \frac{1}{2}x + c, c \neq 1$, oe
(c)		x = 2y - 2 OR $x = 2(y - 1)$	2	M1 for correctly multiplying both sides by 2 or correctly isolating $\frac{x}{2}$ A1 for $x = 2(y-1)$, $x = \frac{y-1}{0.5}$, $\frac{y-1}{\frac{1}{2}}$ oe SC B1 for $x = 2y-1$
7	4x - 6y = 22 15x + 6y = 54 19x = 76	x = 4, y = -1	4	 M1 for coefficients of x or y the same followed by correct operation, allow one arithmetical error A1 cao M1 (dep) for correct sub for other variable A1 cao Trial and improvement 0 marks unless both correct values of x and y found
8 (a)	$SF = \frac{10}{6}$ $\frac{10}{6} \times 4.8 = 8$	8	2	M1 for sight of $\frac{10}{6}$ or $\frac{6}{10}$ or 1.67 or better or $\frac{CD}{10} = \frac{4.8}{6}$ A1 cao
	$\frac{10}{6} \times 4.5 - 4.5 = 3$	19.8	2	M1 for use of SF from "a" to find AC or BC or $\frac{BC}{4.5} = \frac{4}{6}$ and adding 4 sides A1 cao

Paper 550	6			
No	Working	Answer	Mark	Notes
9	$\frac{6 \times 10^{15}}{3.2 \times 10^{8}}$ 1.875 \times 10 ⁷	4.3×10 ³	3	B3 for 4.3×10^3 to 4.34×10^3 (B2 for 1.875×10^7 oe or 4300 to 4340, final answer of 1.9×10^7 B1 for sight of 6×10^{15} oe or 3.2×10^8 oe)
10	$8.5 \times \tan 38$ = 8.5 \times 0.7813 $\frac{8.5}{\sin(90 - 38)} = \frac{AB}{\sin 38}$ $AB = \frac{8.5 \times \sin 38}{\sin(90 - 38)}$ = $\frac{5.2331}{0.788} = 6.64$	6.64	3	M1 for correct use of trig, eg tan $38 = \frac{opp}{8.5}$ M1 for $8.5 \times tan 38$ A1 $6.64 - 6.641$ OR M1 for correct substitution into the sine rule M1 (dep) for correct rearrangement for AB = A1 $6.64 - 6.641$
11 (a)		No, as you would expect about 100. Yes, as it is possible to get 200 sixes with a fair dice	1	B1 for a consistent answer See additional sheet

No	Working	Answer	Mark	Notes
(b)	$\frac{1}{6}, \frac{5}{6}$ + labels		3	B1 for $\frac{5}{6}$ on the red dice, <i>not six</i> branch
	6,6			0
				B1 for a fully complete tree diagram with all branches labelled
				B1 for $\frac{1}{6}$ and $\frac{5}{6}$ on all remaining branches as
				appropriate
<				
(c)(1)	$\left(\frac{1}{6}\right)^2$	$\frac{1}{36}$	2	M1 $\left(\frac{1}{6}\right)^2$ or $\frac{1}{6} \times \frac{1}{6}$ only or 0.28
	$\left(6 \right)$	36		$\left(\frac{1}{6}\right) \text{or } \frac{1}{6} \wedge \frac{1}{6} \text{only or } 0.28$
				A1 $\frac{1}{36}$ or 0.03 or better
				$\frac{1}{36} = \frac{1}{36} $
(ii)	$1 - \left(\frac{5}{6}\right)^2$	$\frac{11}{36}$	3	M2 for $1 - \left(\frac{5}{6}\right)^2$ or $1 - \frac{5}{6} \times \frac{5}{6}$
	$1-\left(\frac{1}{6}\right)$	36		M2 for $1 - \left(\frac{-}{6}\right)$ of $1 - \frac{-}{6} \times \frac{-}{6}$
				A1 cao
	OR			OB
	$\frac{1}{6} \times \frac{5}{6} + \frac{5}{6} \times \frac{1}{6} + \frac{1}{6} \times \frac{1}{6}$			OR 1 5
	6 6 6 6 6 6			M1 for $\frac{1}{6} \times \frac{5}{6}$ oe
				M1 for 2 or 3 only of $\frac{1}{6} \times \frac{5}{6}, \frac{5}{6} \times \frac{1}{6}, \text{ "a"}$
				A1 for $\frac{11}{36}$ or 0.31 or better

Paj	Paper 5506					
	No	Working	Answer	Mark	Notes	
12	(b)	$\pi \times 30 \times \frac{7.5^2}{3} - \pi \times 10 \times \frac{2.5^2}{3} = 1767 - 65$ $\frac{S}{2\pi d} = \sqrt{h^2 + d^2}$ $\left(\frac{S}{2\pi d}\right)^2 = h^2 + d^2$	$h = \sqrt{\frac{S^2 - 4\pi^2 d}{4\pi^2 d^2}}$	3	M1 for either $\pi \times 30 \times \frac{7.5^2}{3}$ or $\pi \times 10 \times \frac{2.5^2}{3}$ M1 (dep) for difference A1 1700 - 1702 SC B1 Using d instead of r, 6800 - 6808 M1 for correctly isolating $\sqrt{h^2 + d^2}$ or $h^2 + d^2$ or $h + d$ or kh^2 or kh M1(indep) squaring both sides A1 $h = \sqrt{\frac{S^2 - 4\pi^2 d^4}{4\pi^2 d^2}}, h = \frac{\sqrt{S^2 - 4\pi^2 d^4}}{2\pi d}$ $h = \sqrt{\left(\frac{S}{2\pi d}\right)^2 - d^2}$	
	(c)	$\left(\frac{30}{20}\right)^2 \times 450 \text{ or } 450 \div \left(\frac{20}{30}\right)^2$	1012.5	2	M1 for sight of correct SF ² including 4:9 A1 1010 to 1013	

Paper 5506					
No	Working	Answer	Mark	Notes	
13 (a)	$\frac{2x(x+20)}{2} = 400$	As given	2	M1 $\frac{2x(x+20)}{2}$ or $\frac{2x \times x + 20}{2}$ or $2x(x+20) = 800$ A1 cao following correct working, no need for = 400 SC B1 $2x \times x + \frac{1}{2} \times 2x(10 - \frac{x}{2}) \times 2$	
(b)	$\frac{-20 \pm \sqrt{20^2 - 4 \times 1 \times (-400)}}{2}$ $= \frac{-20 \pm 44.721}{2}$	12.361	3	M1 for correct sub, up to signs, in the quad formula A1 for 44.7 or $\sqrt{2000}$ A1 for 12.3606 – 12.361, ignore negative solution T.I B3 for 12.361 OR Completing the square M1 for $(x+10)^2$ seen A1 for $-10 \pm \sqrt{500}$ A1 for 12.3606 – 12.361 ignore negative solution	

	No	Working	Answer	Mark	Notes
14	(a)	$0.5 \times 8 \times 15 \times \sin 70^{\circ}$	56.4	2	M1 for correct sub into area formula
					A1 56.38 – 56.4
	(b)	$AB^{2} = 8^{2} + 15^{2} - 2 \times 8 \times 15 \times \cos 70^{0} = 206.9$	7.84	4	M1 for correct sub into cos rule
					A1 for 206.9 - 207 or 14.38 – 14.4
		EITHER			EITHER
		$0.5 \times AB \times CX = 56.38'$			M1 for use of area rule to find CX
					A1 7.83 – 7.84
		OR			OR
		$\sin B = \sin 70$			M1 for correct use of sine rule to find sin B or sin A an
		$\frac{1}{8} = \frac{1}{\sqrt{206.9'}}$			then sight of 15sin B or 8 sin A
		B = 31.5			A1 7.83 – 7.84
		$15 \sin^2 31.5^2$			

Paper 5506					
No	Working	Answer	Mark	Notes	
15 (a)	$4a^{2} - 4a + 1 - (4b^{2} - 4b + 1) =$ $4(a^{2} - b^{2}) - 4(a - b)$	AG	3	Expansion Method M1 for a correct expansion of any one of the three terms M1(dep) on an attempt to expand all 3 terms and show LHS = RHS A1 fully correct algebra RHS exp is $4(a^2 + ab - a - ba - b^2 + b)$	
	4(a-b)(a+b-1) OR $((2a-1)-(2b-1))((2a-1)+(2b-1))$ $(2a-2b)(2a+2b-2)$			OR Factorisation Method M1 for attempt to use difference of 2 squares on LHS M1 for one bracket correctly simplified A1 fully correct	
(b)	Any 2 odd square numbers have the above form If a and b are both even or odd then $a - b$ is even, so $4(a - b)$ is a multiple of 8 If one of a,b is odd, then $a + b - 1$ is even, so 4(a + b - 1) is a multiple of 8		3	B1 'any 2 square nos have the above form' (may be implied by sight of $(2a - 1)^2 - (2b - 1)^2$ in part (b)) B1 first reason B1 second reason SC B1 for $(2r + 1)^2 - (2r - 1)^2$ B1 for 8r	
16 (a)	$g_{L} = \frac{2 \times 4.495}{1.35^{2} \times \sin 30.5}$ 2×4.505	9.719 11.710	4	B2 for any 4 of 4.505, 1.25, 29.5, 4.495, 1.35, 30.5 seen (B1 for any two or three seen) B1 for 11.710 – 11.7103 B1 cao 9.719 – 9.71904	
(b)	$g_u = \frac{2 \times 4.505}{1.25^2 \times \sin 29.5}$ Round, until lower and upper bounds agree	10	1	B1 for 10 + reason " they agree to this level of accuracy"	

Paper 5506					
No	Working	Answer	Mark	Notes	
17 (a)(i)	ху	3	B1 cao	
(ii)	$\frac{xy}{y^2}$		B1 for y^2 or $y \times y$	
(iii)	$\frac{x}{2}$		B1 for $\frac{x}{2}$ or 0.5x or 2 ⁻¹ x	
(b) Divide to get $2y = 1$	q = -1	2	M1 for $2y = 1$ or $\frac{x}{2} = 32$ or $p + q = 5$ or $1 + p + 2q = 5$	
		p = 6		Al cao	
18 (a	$x^2 - 2mx + m^2 - k$	$k = m^2$	2	M1 for correct exp of $(x - m)^2$ or correct completion of	
				the square eg $\left(x - \frac{2m}{2}\right)^2 - \left(\frac{2m}{2}\right)^2$ A1 cao SC B1 for $k = -m^2$	
(b)(i) Min value is $-m^2$	$-m^2$	3	M1 for recognition that min value occurs when $(x - m)^2 = 0$ (either (b)(i) or (b)(ii) correct implies this M1)	
(ii) $x = m$	m		A1 ft on ' k ', " $-k$ " gets M1 A0 A1 cao	
19	$0.06 \times 0.05 = 0.003$	No	2	M1 for 0.06 × 0.05	
				A1 correct conclusion based on 0.003 or 0.06 x 0.05 stated as \neq 0.0011 OR M1 for statement that for the two events to be independent P (BL and CL) = P(BL) × P(CL)	

Paper 5506					
No	Working	Answer	Mark	Notes	
20		50	3	B1 50 or $\frac{100}{2}$	
		50		B1 for 50 or " <i>a</i> "	
		4		B1 4 or $\frac{360}{90}$ oe	

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4LN

Telephone 01623 467467 Fax 01623 450481

Order Code UG014129 June 2003

For more information on Edexcel qualifications please contact our Customer Response Centre on 0870 240 9800 or email: enquiries@edexcel.org.uk or visit our website: www.edexcel.org.uk

London Qualifications Limited. Registered in England and Wales no.4496750 Registered Office: Stewart House, 32 Russell Square, London WC1B 5DN

