

GCSE

Edexcel GCSE
Mathematics A 1387

July 2004

Mark Scheme

London Qualifications is one of the leading examining and awarding bodies in the UK and throughout the world. It incorporates all the qualifications previously awarded under the Edexcel and BTEC brand. We provide a wide range of qualifications including general (academic), vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, our centres receive the support they need to help them deliver their education and training programmes to learners.

For further information please call Customer Services on 0870240 9800, or visit our website at www.edexcel.org.uk

July 2004
Publications Code UG015616
All the material in this publication is copyright
© London Qualifications Ltd 2004

CONTENTS

Notes on Marking Principles 2
Paper 5514 4
Paper 5515. 8
Paper 5516 11
Paper 5517 15
Paper 5518 19
Paper 5519 23

NOTES ON MARKING PRINCIPLES

NOTES ON MARKING PRINCIPLES

1 Three types of mark are available

M marks - awarded for correct working seen or implied.
A marks - conditional accuracy marks which are awarded for accurate working following the award of M marks.
B marks - unconditional accuracy marks (independent of M).

2 Abbreviations

cao - correct answer only.
ft - follow through.
\downarrow - Denotes a "follow through" answer.
SC - special case.
isw - ignore subsequent working.
oe - or equivalent (and appropriate).
NB: a candidate cannot benefit from both isw and ft.
3 If no working shown, then
correct answers normally score full marks
incorrect (even though nearly correct) answers score no marks.

4 Marking instructions

Misread loses A marks (and sometimes B marks) on that part but ft can be allowed on subsequent parts. M marks can still be earned. If in doubt contact your team leader. If there is a wrong answer in the answer space DO CHECK the working in the body of the script.

- If it is clear from working that the "correct" answer has been obtained from incorrect working, award no marks. If in doubt contact your team leader.
- If there is a wrong answer in the answer space DO CHECK the working in the body of the script.
- If it is clear from working that the "correct" answer has been obtained from incorrect working, award no marks. If in doubt contact your team leader.

5 Style of marking

Answer correct: tick and write part mark in margin NEXT TO BRACKETED MARK.
Answer incorrect: cross, but show M, A or B marks if any earned in body of script and transfer the total of these to the margin next to the bracket mark.
Total for each double page at bottom right page (except for back if used), FINAL
TOTAL IN RELEVANT BOX ON FRONT COVER.
Nought in margin for fully incorrect question or page AND FOR NO ATTEMPT.
Where no attempt has been made a line should be put in the answer space and zero in the margin next to the bracketed mark
CHOICE OF METHOD - No marks unless one answer is in answer space - then mark that.
CROSSED OUT WORK - if not replaced this should be marked (if legible).
There must always be a mark next to bracketed mark in the margin/

6 Follow Through Marks

Follow throughs are guided by two principles:
(a) Follow throughs which involve a single stage calculation can be awarded without working since you can check the answer yourself, but if ambiguous, do not award.
(b) Follow throughs which involve more than one stage of calculation can only be awarded on sight of the relevant working, even if it appears obvious that there is only one way you could get the answer given.

7 Probability

Probability answers must be given as fractions, percentages or decimals. If a candidate gives a decimal equivalent to a probability, this should be written to at least two decimal places (unless tenths).
Incorrect notation should lose the accuracy marks, but be awarded any implied method marks.

6 Linear Equations

Full marks can be gained if the solution alone is given on the answer line, or otherwise unambiguously indicated in working (without contradiction elsewhere). Where the correct solution only is shown substituted, but not identified as the solution, the accuracy mark is lost but any method marks can be awarded.

8 Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded in another.

PAPER 5501				
No	Working	Answer	Mark	Notes
1		$\begin{aligned} & \mathrm{K}: 1020 \\ & \mathrm{~L}: 8.06 \\ & \hline \end{aligned}$	2	B1 for 1020 or 1,020 B1 for 8.06 Accept $£ 8.06$ p and $£ 8,06$
2 (a) (b) (c)		28, 33	$\begin{aligned} & 2 \\ & 1 \\ & 1 \end{aligned}$	B1, B1 (B1 ft for " 28 " +5 if both numbers >25) B1 for add $5,+5$, for going up in 5 's the difference is 5 oe B1 for they end in 3 and 8 , it ends in 7; or refers to 383 and 388 are in sequence
3 (a)(i) (ii) (b)(i) (ii) (iii) (iv) (c)		$\frac{1}{2}$ 2 rectangles shaded 40 150000 6.55 $\frac{3}{8}$ Cross 3 cm from A	2 1 4 1	B2 for $1 / 2$ accept half (B1 for an equivalent unsimplified fraction eg $4 / 8$ or 50% or 0.5) B1 for correct shading (any 2 rectangles) B1 for 40 cao B1 for 150000 cao (accept 150,000 not 150.000) B1 for 6.55 cao not $6.5^{1 / 2}$ B1 for $\frac{3}{8}$ oe accept 0.375 B1 mark a cross $3 \mathrm{~cm}(\pm 2 \mathrm{~mm})$ from A
$\begin{array}{\|ll} \hline 4 & \text { (a)(i) } \\ & \text { (ii) } \\ & \text { (b) } \\ \hline \end{array}$		metres grams miles	$\begin{aligned} & 2 \\ & 1 \end{aligned}$	B 1 for metres (m) B1 for grams (g) B1 for miles
$\begin{array}{ll} \hline 5 & \text { (a) } \\ & \text { (b)(i) } \\ & \text { (ii) } \end{array}$		$\begin{aligned} & (3,2) \\ & Q \text { at }(0,3) \\ & R \text { at }(-2,-3) \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	B1 for (3, 2) B1 for Q plotted correctly on y-axis at $(0,3) \pm 2 \mathrm{~mm}$ B1 for R plotted correctly at $(-2,-3) \pm 2 \mathrm{~mm}$
6 (a)(i) (ii) (b)(i) (ii)		30 25 4 shapes $11 / 2$ shapes	2 2	B1 for 30 B1 for 25 B1 for drawing 4 shapes B1 for drawing $11 / 2$ shapes

PAPER 5501				
No	Working	Answer	Mark	Notes
$7 \quad \text { (a) }$ (b)	$20 \times 3+5$	$\begin{aligned} & 30 \\ & 65 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	B1 for 30 M1 for $20 \times 3+5$ oe A1 for 65
$8 \quad \text { (a) }$ (b)		Draws perp. Sketches a cylinder		B1 for correctly drawing perp must touch line or cut line $A B \pm 2 \mathrm{~mm}$ B1 for sketching cylinder
$9 \quad \text { (a) }$ (b)	$\begin{aligned} & 1974 \\ & \frac{6580}{8554} \\ & 990 \div 69=14.3 \ldots . \text { or } 14 \text { rem } 24 \end{aligned}$	855.4 14	3 4	M1 for complete method with relative place value correct, condone 1 error in multiplication A2 cao (A1 for digits 8554 seen or A1 for " 855.4 " dependent on 1 arithmetic error) Method 1 - Everything excluding long division M2 for a valid method with no errors ...need to see 966 or 1035 (M1 for a valid method, including estimation, that reaches an answer between 901 and 1099 inclusive. Ignore errors.) A2 for 14 with a fully correct method (A1 (dep on $1^{\text {st }} \mathrm{M} 1$) for an answer between 14 and 15 inclusive. Ignore errors. Cannot have used estimation.) Note: Estimation can only score a maximum of M1 unless accompanied by another method or 966 or 1035 see (award M2) Method 2 - long division method M2 for $990 \div 69=$ integer answer between 12 and 19 inclusive and rem 30 seen (M1 for $990 \div 69$ with 1 in tens column.) A2 for 14 with fully correct method (A1 (dep on $1^{\text {st }} \mathrm{M} 1$) for an answer between 14 and 15 inclusive.)

PAPER 5501				
No	Working	Answer	Mark	Notes
10 (a)(i) (ii) (b)(i) (ii) (c)		$\begin{aligned} & 7 \\ & -10 \\ & 6 \\ & 8 \\ & -7 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 1 \end{aligned}$	B1 for 7 B1 for -10 B1 for 6 (accept -6) B1 for 8 (accept -8) B1 for -7 cao
11 (a) (b)(i) (ii)		$\begin{aligned} & \mathrm{B} \text { and } \mathrm{D} \\ & \mathrm{~A} \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	B1, B1 (-1 each extra) B1 for A B1 for 3
12 (a) (b) (c) (d)	$800-144$ 144 is less than 200 so Trudy is wrong $\begin{aligned} & \frac{45 \times 800}{100} \\ & \frac{176}{800} \times 100 \end{aligned}$	656 360 22	2 2 2 2	M1 for at least 1 digit correct and in correct position needs to be 3 digit number A1 for 656 B1 for 200 B1ft for 'correct' explanation based on cand's "200" M1 for $45 \times 800 \div 100$ oe A1 for 360 M1 for $\frac{176}{800} \times 100$ oe A1 for 22
13 (a)(i) (ii) (iii) (iv) (b)	$\begin{aligned} & 2^{3}=8 \\ & \text { or } 2^{3}=2 \times 2 \times 2 \\ & \text { (which is not } 6 \text {) } \end{aligned}$	$\begin{aligned} & 25 \\ & 28 \\ & 5 \text { and } 20 \\ & 26 \text { and } 33 \end{aligned}$	4 1	B1 for 25 B1 for 28 B1 for 5 and 20 B1 for 26 and 33 B1 for valid 'explanation'
14		$\begin{aligned} & 10 \\ & \mathrm{~m}^{2} \end{aligned}$	2	B1 for 10 B1 indep for m^{2}.

PAPER 5501				
No	Working	Answer	Mark	Notes
15 (a) (b)	$\begin{aligned} & \frac{11}{12}-\frac{10}{12} \\ & \frac{70 \times 400}{200} \end{aligned}$	$\begin{aligned} & \frac{1}{12} \\ & 140 \end{aligned}$	2 2	M1 for correctly writing both fractions to a common denominator A1 for $\frac{1}{12}$ oe B2 for 140 (accept 136) (B1 for sight of any two of 70,400 or 200)
16 (a) (b) (c)		$\begin{aligned} & 2 y \\ & 3 p^{2} \\ & x(x-3) \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 2 \end{aligned}$	B1 for $2 y$ or $2 \times y, y 2, y \times 2$ B1 for $3 p^{2}$ or $3 \times p^{2}$ or $p^{2} \times 3$ or $p^{2} 3$ B2 for $x(x-3)$ (B1 for $x(x \ldots \ldots))$ $\frac{25}{60}$ wrongly cancelled gets B1 ISW
17 (a) (b)		2 23 9 34 15 2 9 26 17 25 18 60 $\frac{25}{60}$ 	3 1	B3 for all correct (B2 for 4 or 5 entries correct) (B1 for 2 or 3 entries correct) B1 for $\frac{25}{60}$ or $\frac{5}{12}$ oe $\frac{25}{60}$ wrongly cancelled gets B1 ISW

PAPER 5501				
No	Working	Answer	Mark	Notes
21	Vertices of new triangle at $(2,-2)(2,6)$ and $(6,-2)$	Correct triangle drawn	3	B3 cao (B2 for either correct triangle in wrong translated position or for 2 vertices correct) (B1 a right angled triangle with horizontal length 4 or vertical length 8 in the same orientation as the shaded triangle) SC B2 for s +3 totally correct
22 (a) (b) (c)	$8560 \div(10 \times 10)$	8 Pentagon 85.6	$\begin{aligned} & 1 \\ & 1 \\ & 2 \end{aligned}$	B1 for 8 B1 for pentagon M1 for $8560 \div(10 \times 10)$ oe A1 for 85.6
23	$\begin{aligned} & 2 x+x+100+47=360 \\ & 2 x+x=360-100-47 \\ & x=71 \\ & \text { Largest angle }=2 x= \end{aligned}$	142	4	M1 for $2 x+x+100+47=360$ or $360-147$ or 213 seen M1 dep for correctly separating x-terms and non x terms or " $360-147$ " $\div 3$ A1 for $x=71$ provided M2 awarded A1 ft for 142

PAPER 5502				
No	Working	Answer	Mark	Notes
1 (a) (b) (c)		$\begin{aligned} & \text { Diagram } \\ & 22,26 \\ & 46 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	B1 cao B1 cao B1 cao
2 (b) (c)	$\begin{equation*} £ 5.95+£ 1.62+25 p+2 \times 48 p=£ 8.78 \tag{a} \end{equation*}$ $\begin{aligned} & 160 \div 12=13 .(333 \ldots) \\ & " 14 " \times £ 12.20=£ 170.80 \end{aligned}$	$\begin{aligned} & \hline 1.22 \\ & 14 \\ & 170.80 \end{aligned}$	3 2 2	M1 for 3 of $£ 5.95, £ 1.62,25$ p, 48 p seen with intention to add or 170 seen A1 for $£ 8.78$ A1 ft from " 8.78 " M1 for $160 \div 12$, or 13 or better or 12×13 or 12×14 A1 14 cao M1 for " 14 " $\times 12.20$ A1 for 170.80 or 158.60 if 13 in (b) NB: 170.8 or 158.6 gets M1 A0
$3 \quad$ (a)(i) (ii) (b) (c)		$\begin{aligned} & 1459 \\ & 9541 \\ & 9+5=14 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { B1 cao } \\ & \text { B1 cao } \\ & \text { B1 cao } \\ & \text { B1 cao } \end{aligned}$
4 (a) (b) (c) (d) (e)(i) (ii) (f)	67 - "43"	$\begin{aligned} & 1123 \\ & 1125 \\ & 43 \\ & 24 \\ & \\ & 80 \\ & 56-58 \\ & \text { Completes graph } \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	B1 cao B1 cao B1 cao M1 for 67 - " 43 " A1 ft from " 43 " B1 cao B1 answer in range 56 to 58 inc B2 for (Apr , 70) and (May, $60<\mathrm{p}<65$) plotted and joined (B 1 for one point plotted)

PAPER 5502				
No	Working	Answer	Mark	Notes
10 (a) (b) (c)		Acute Reflex reason	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	B1 B1 B1 reason eg $120+230=350 \neq 360$
(b)		$\begin{align*} & \frac{1}{2} \tag{a}\\ & \text { reason } \end{align*}$	1 1	B1 for $\frac{1}{2}$ oe B1 for reason e.g could get 30 heads
$12 \quad \text { (a) }$ (b)	$\begin{aligned} & 7.5 \times 4 \\ & \sqrt{ }(42.25) \end{aligned}$	30 6.5	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	M1 for 7.5×4 or $7 \frac{1}{2} \times 4$ A1 cao B2 for 6.5 (B1 for 42.25)
13 (a) (b) (c) (d)		$\begin{aligned} & 6 x \\ & x-4 \\ & 12(x-4) \\ & 18 x-48 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 2 \end{aligned}$	B1 accept $6 \times x, x 6$ oe B1 cao B1 for $12(x-4)$ or $12 x-48$ or $12 \times x-48$ oe M1 for " $6 x$ " + " $12(x-4)$ " or " $6 x$ " + " $12 x-48$ " oe A1 ft $18 x-48,2(9 x-24), 3(6 x-16), 6(3 x-8)$
14 (a) (b)		$\begin{aligned} & \hline 90 \\ & 317 \end{aligned}$	$\begin{aligned} & 2 \\ & 1 \end{aligned}$	B2 for 90 ± 2 (B1 for 9 ± 0.2) B1 for 317 ± 4
15 (a) (b)	Accurate drawing of triangle Measure angle A	63°	$\begin{aligned} & 2 \\ & 1 \end{aligned}$	B1 cao for $38^{\circ}\left(\pm 2^{\circ}\right)$ B1 cao (indep) for BC drawn $7.3 \mathrm{~cm}(\pm 2 \mathrm{~mm})$ and completing the triangle. B1 for $63^{\circ}\left(\pm 2^{\circ}\right)$ or ft their diagram $\left(\pm 2^{\circ}\right)$

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{PAPER 5502} \\
\hline No \& Working \& Answer \& Mark \& Notes \\
\hline \begin{tabular}{l}
(a) \\
(b)
\end{tabular} \& \begin{tabular}{l}
\[
\begin{aligned}
\& 0 \times 1=0 \\
\& 1 \times 1=1 \\
\& 2 \times 4=8 \\
\& 3 \times 8=24 \\
\& 4 \times 8=32 \\
\& 5 \times 7=35
\end{aligned}
\] \\
Either
\[
35.50 \div 1.42=25 ; 26.99-25=1.99
\] \\
Cheaper in the USA \\
Or
\[
26.99 \times 1.42=38.33 ; 38.33-35.50=2.83
\] \\
Cheaper in the USA
\end{tabular} \& 100 \& 3

3 \& | M1 col $1 \times \operatorname{col} 2$ (at least 3 shown) |
| :--- |
| M1 (dep) sum of totals |
| A1 cao |
| SC: M1 M1 A0 for 101 |
| M1 $35.50 \div 1.42$ |
| A1 25 seen |
| B1 ft (dep on M1) $£ 1.99$ with conclusion (must have units) |
| OR |
| M1 26.99×1.42 |
| A1 38.32 or $38.33 \ldots$ seen |
| B1 ft (dep on M1) $\$ 2.83$ or $\$ 2.82$ with conclusion (must have units) must be to 2 dp |

\hline | 17 (a) |
| :--- |
| (b) |
| (c)(i) |
| (ii) | \& \& \[

$$
\begin{aligned}
& ,(1),(3), 5,7,9 \\
& \text { Graph } \\
& 0.4 \\
& 1.2
\end{aligned}
$$
\] \& 2

2

2 \& | B2 cao |
| :--- |
| (B1 for 2 values) |
| B1 ft for plotting points $\pm 1 / 2$ square |
| B1 cao for line between $x=-2$ and $x=3$ |
| B1 for 0.4 or ft from single straight line with positive gradient |
| B1 for 1.2 or ft from single straight line with positive gradient |

\hline
\end{tabular}

PAPER 5502				
No	Working	Answer	Mark	Notes
18 (a) (b) (c) (d)(i) (ii)	$\begin{aligned} & 280 \mathrm{~g} \rightarrow \\ & 120 \text { pages } \rightarrow \end{aligned}$	Plots description line of best fit reading reading	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 2 \end{aligned}$	B1 cao B1 dynamic relationship or "positive" (correlation) Line within overlay region, and to the extent of. B1 ft from single straight line of positive gradient ($\pm 1 / 2$ square) B1 ft from single straight line of positive gradient $(\pm 1 / 2 \text { square })$
19		$\begin{aligned} & 200 \\ & 150 \\ & 225 \\ & 150 \\ & 10 \end{aligned}$	3	B3 cao (B2 for three correct, or B1 for one correct)
$20 \quad \text { (a) }$ (b)			2 2	B1 B1 for correct sketch - ignore additional internal lines B1 B0 for rectangle or right-angled triangle or correct shape without line NB 3-D sketch gets B0 B0 B1 B1 for correct plan - ignore internal lines accept a rotated plan, not reflected B1 B0 for a single rectangle drawn NB 3-D sketch gets B0 B0
$21 \quad \text { (a) }$ (b)	$\begin{aligned} & 163.25-35.50=127.75 \\ & 127.75 \div 18.25=7 \\ & 1.175 \times £ 64 \text { or } \frac{17.5}{100} \times 64 \text { or } £ 11.20 \text { seen } \end{aligned}$	8 75.20	3 2	M1 163.25-35.50 (or sight of 127.75) M1 (dep) " 127.75 " $\div 18.25$ A1 cao SC: M2 for 7 days M1 $1.175 \times 64,0.175 \times 64$ oe or 11.20 or 75.2 seen or $6.40,3.20$ and 1.60 seen A1 cao

PAPER 5502				
No	Working	Answer	Mark	Notes
22		6	1	B1 cao
		$t^{2}-2 t$	1	B1 oe
		$3(y-4)$	1	B1 Accept $3 \times(y-4)$ or $3(y-4$
23 (a)		Reason	1	B1 Makes some mention of bias either directly or making reference to an insufficient or biased range of responses
(b)		Reason	1	B1 (a) an insufficient range of responses (b) No mention of money (c) No time frame in the question (d) Misunderstanding of "A lot" and "Not much"

PAPER 5503				
No	Working	Answer	Mark	Notes
1		10.	1	B1 for 10
$2 \quad$ (a)(i) (ii) (b)	$5 \times-3+1$	$\begin{aligned} & 3 e+2 f \\ & 3 p^{2} \\ & -14 \end{aligned}$	2 2	B1 for $3 e+2 f$ B1 for $3 p^{2}$ M1 for $5 \times-3+1$ A1 for -14
3	$\begin{aligned} & 1974 \\ & \frac{6580}{8554} \end{aligned}$	855.4	3	M1 for complete correct method with relative place value correct, condone 1 error in multiplication. A2 cao (A1 for digits 8554 seen or A1 ft for " 855.4 " dependent on one arithmetic error only)
$4 \quad \text { (a) }$ (b)		2 23 9 34 15 2 9 26 17 25 18 60 $\underline{25}$ $\frac{60}{}$	3 1	B3 all correct (B2 for 4 or 5 entries correct) (B1 for 2 or 3 entries correct) B1 for $\frac{25}{60}$ or $\frac{5}{12}$ oe
5 (a) (b)	$\frac{45}{100} \times 800$ $\frac{176}{800} \times 100$	360 22	2 2	M1 for $\frac{45}{100} \times 800$ oe A1 for 360 M1 for $\frac{176}{800} \times 100$ oe A1 for 22

PAPER 5503				
No	Working	Answer	Mark	Notes
(a)	$\frac{11}{12}-\frac{10}{12}$	$\frac{1}{12}$	2	M1 for correctly writing both fractions to a common denominator A1 for $\frac{1}{12}$ oe
(b)	$\frac{70 \times 400}{200}$	140	2	B2 for 140 (accept 136) (B1 for sight of any two of 70, 400 or 200)
$7 \quad$ (a)(i) (ii) (b)(i) (ii)		60 130	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	B1 for 60 B1 for all angles equal so equilateral triangle oe B1 for 130 B1 for isosceles triangle oe B1 for angles on a straight line add up to 180° oe
(c)		64	1	B1 for 64
8	$\begin{aligned} & 9 \times 1+3 \times 2+5 \times 3+3 \times 4(=42) \\ & " 42 " \div 20 \end{aligned}$	2.1	3	M1 for $9 \times 1,3 \times 2,5 \times 3,3 \times 4$ or for 42 seen M1 (dep) " 42 " $\div 20$ A1 for 2.1 or $2 \frac{1}{10}$ or $2 \frac{2}{20}$
9 (a) (b) (c) (d)	7 km in 20 minutes	$\begin{aligned} & 0905 \\ & 7 \\ & 10 \\ & 21 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 3 \end{aligned}$	B1 for 0905 oe B1 for 7 B1 for 10 B1 for 20 (minutes) oe or $\times 3$ seen M1 for $\frac{\text { " } 7 "}{" 20 "}$ A1 cao SC: "7" $\times 3$ gets B1 M1

PAPER 5503				
No	Working	Answer	Mark	Notes
10	Vertices of new triangle at $(2,-2)(2,6)$ and $(6,-2)$	Correct triangle drawn	3	B3 cao (B2 for either correct triangle in wrong translated position or for 2 vertices correct) (B1 for a right-angled triangle with horizontal length 4 or vertical length 8 in the same orientation as shaded triangle) SC B2 for scale factor 3, totally correct
11	$2^{2}+3=$	7 which is not even	2	B2 (B1 for correctly evaluating $n^{2}+3$ with a prime number value for n.)
12 (a) (b) (c)(i) (ii)	$\begin{aligned} & 360 \div 5 \\ & 8560 \div(10 \times 10) \\ & \\ & \text { Least length }=100.5 \\ & \text { Greatest length }=101.5 \end{aligned}$	$\begin{aligned} & \hline 72 \\ & 85.6 \\ & \\ & 100.5 \\ & 101.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \end{aligned}$	M1 for $360 \div 5$ oe A1 for 72 M1 for $8560 \div(10 \times 10)$ oe A1 for 85.6 B1 for 100.5 B1 for 101.5 or 101.499 or better
13	$\begin{aligned} & 2 x+x+100+47=360 \\ & 2 x+x=360-100-47 \\ & x=71 \end{aligned}$ Largest angle $=2 x=$	142	4	M1 for $2 x+x+100+47=360$ or $360-147$ or 213 seen M1 (dep) for correctly separating x-terms and non x terms or $\frac{\text { " } 360-147 \text { " }}{3}$ A1 for $x=71$ A1 ft (provided M2 awarded) for "142"
$14 \quad$ (a)(i) (ii) (b)	$\mathrm{LCM}=3 \times 13 \times 17=3 \times 221$	$\begin{aligned} & \hline 2.21 \\ & 0.013 \\ & 663 \end{aligned}$	2 2	B1 for 2.21 B1 for 0.013 M1 for $3 \times 13 \times 17$ oe A1 for 663

PAPER 5503			
No	Working Answer	Mark	Notes
15	Tick boxes 1,3 \& 6	3	B1 for $\frac{\pi a b c}{2 d} ; \mathrm{B} 1$ for $2 a^{2} ;$ B1 for $2\left(c^{2}+d^{2}\right)$ (-B1 for each additional expression ticked (>3) to a minimum of 0)
16	 200×0.2 40	2	M1 for 200×0.2 or $\frac{40}{200}$ seen A1 for 40
(a) (b)	eg $2 \mid \underline{108}$ $2^{2} \times 3^{3}$ 2 $\underline{54}$ $3 \mid \underline{27}$ 3 $\underline{9}$ 3 12	3 1	M2 for full systematic method of at least 4 divisions by prime numbers oe factor trees; condone 1 calculation error (M1 for 108 written as a correct product(s) with only one non-prime or equivalent division or a full process with 2 calculation errors.) A1 for $2^{2} \times 3^{3}$ (accept $2 \times 2 \times 3 \times 3 \times 3$) B1 for 12
18	Perpendicular from P to intersecting arcs (within tramlines); perpendicular at least 2 cm long	2	M1 relevant pair of arcs crossing within tramlines A1 SC M1 AO for a full construction of a perpendicular to AB not passing through P .
19	15×10 $150 \mathrm{~cm}^{3}$.	3	M1 for 15×10 A1 for 150 B1 for cm^{3}.

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{PAPER 5503} \\
\hline No \& Working \& Answer \& Mark \& Notes \\
\hline \begin{tabular}{l}
23 (a) \\
(b) \\
(c)
\end{tabular} \& Median(B)>Median(G); on average boys take longer \(\operatorname{IQR}(\mathrm{B})>\mathrm{IQR}(\mathrm{G})\); times for boys have a greater spread \& 32 \& 1
3

2 \& | B1 for 32 (accept 31.5 to 33.5 inclusive) |
| :--- |
| B1 for ends of whiskers at 9 and 57, (with a box) |
| B1 for ends of box at 16 and $45(\pm 0.5)$ |
| B1 for median marked at 32 or a complete box and whisker diagram drawn with a median inside the box |
| B1 eg for comparison of medians |
| B1 eg for comparison of (interquartile) ranges |

\hline $$
24 \quad \text { (a) }
$$ \& \[

6 y=15-5 x

\] \& \[

y=\frac{15-5 x}{6}
\] \& 2 \& M1 for either $6 y=15-5 x$ or $-6 y=5 x-15$ or for $\frac{5 x}{6}+y=\frac{15}{6}$ or a correct ft on sign error to $y=$ A1 for $y=\frac{15-5 x}{6}$ oe

\hline (b) \& $$
6 k+5(-21)=15
$$ \& \[

20
\] \& 2 \& M1 for substitution of $x=-21$ (or $x=21$) into given equation or candidate's answer to (a) A1 for $k=20$

\hline | (c)(i) |
| :--- |
| (ii) | \& \& Region R indicated

\[
(1,1)

\] \& 3 \& | B2 correct region shaded (accept unshaded if R clear) |
| :--- |
| (B1 shaded or R region satisfies 3 of the 4 given inequalities with same boundaries) |
| B1 for (1,1) |

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{PAPER 5504} \\
\hline No \& Working \& Answer \& Mark \& Notes \\
\hline \begin{tabular}{l}
\[
1 \quad \text { (a) }
\] \\
(b)
\end{tabular} \& \begin{tabular}{l}
Accurate drawing of triangle \\
Measure angle A
\end{tabular} \& \(63^{\circ}\) \& \begin{tabular}{l}
\[
2
\] \\
1
\end{tabular} \& \begin{tabular}{l}
B1 cao for \(38^{\circ}\left(\pm 2^{\circ}\right)\) \\
B1 cao (indep) for BC drawn \(7.3 \mathrm{~cm}(\pm 2 \mathrm{~mm})\) and completing the triangle. \\
B1 for \(63^{\circ}\left(\pm 2^{\circ}\right)\) or ft their diagram \(\left(\pm 2^{\circ}\right)\)
\end{tabular} \\
\hline \begin{tabular}{l}
\[
2
\] \\
(a) \\
(b)
\end{tabular} \& \begin{tabular}{l}
\[
\begin{aligned}
\& 0 \times 1=0 \\
\& 1 \times 1=1 \\
\& 2 \times 4=8 \\
\& 3 \times 8=24 \\
\& 4 \times 8=32 \\
\& 5 \times 7=35
\end{aligned}
\] \\
Either
\[
\$ 35.50 \div 1.42=£ 25 ; £ 26.99-£ 25=£ 1.99
\] \\
Cheaper in the USA
Or
\[
£ 26.99 \times 1.42=\$ 38.33 ; \$ 38.33-\$ 35.50=\$ 2.83
\] \\
Cheaper in the USA
\end{tabular} \& 100 \& 3

3 \& | M1 col $1 \times \operatorname{col} 2$ (at least 3 shown) could be implied by answers. M1 (dep) sum of totals |
| :--- |
| A1 cao |
| SC: M1 M1 A0 for 101 |
| M1 $35.50 \div 1.42$ |
| A1 25 seen |
| B1 ft (dep on M1) $£ 1.99$ with conclusion; units needed |
| OR: |
| M1 26.99×1.42 |
| A1 38.33 or $38.32 \ldots$ seen |
| B1 ft (dep on M1) $\$ 2.83$ or $\$ 2.82$ with conclusion; units needed |

\hline | 3 (a) |
| :--- |
| (b) |
| (c)(i) |
| (ii) | \& \& \[

$$
\begin{aligned}
& -1,(1),(3), 5, \\
& 7,9 \\
& \text { Graph } \\
& 0.4 \\
& 1.2
\end{aligned}
$$

\] \& | 2 |
| :--- |
| 2 |
| 2 | \& | B2 cao |
| :--- |
| (B1 for 2 values) |
| B1 ft for plotting points $\pm 1 / 2$ square |
| B1 cao for line between $x=-2$ and $x=3$ |
| B1 0.4 or ft single straight line with positive gradient |
| B1 1.2 or ft single straight line with positive gradient |

\hline
\end{tabular}

PAPER 5504				
No	Working	Answer	Mark	Notes
$4 \quad \text { (a) }$ (b)			2 2	B1 Rectangle drawn B1 Triangle attached Ignore additional internal lines; 3D sketch gets B0 B1 single Rectangle drawn B1 Attached smaller rectangle drawn Accept rotated plan, Ignore internal lines down; Nets get B0
5 (a) (b) (c)	$\begin{aligned} & £ 163.25-£ 35.50=£ 127.75 \\ & £ 127.75 \div £ 18.25=7 \\ & 1.175 \times £ 64 \text { or } \frac{17.5}{100} \times 64 \text { or } £ 11.20 \text { seen } \\ & 54 \times £ 2.38= \end{aligned}$	$\begin{aligned} & \hline 8 \\ & 75.20 \\ & 128.52 \end{aligned}$	3	M1 163.25-£35.50 (or sight of $£ 127.75$) M1 (dep) " 127.75 " $\div 18.25$ A1 cao SC: M2 for 7 days M1 $1.175 \times 64.000 .175 \times 64$ oe or 11.20 or 75.2 seen OR $6.40,3.20$, and 1.60 seen A1 cao M1 $54 \times £ 2.38$ A1 cao
6	Tessellation	Drawing	2	B2 seven additional hexagons, with at least 2 points at which 3 hexagons meet (B1 one point at which 3 hexagons meet).
7		$\begin{aligned} & 200 \\ & 150 \\ & 225 \\ & 150 \\ & 10 \end{aligned}$	3	B3 cao (B2 for three correct, or B1 for one correct)
$8 \quad$ (a)(i) (ii) (b)	Bearing measured Bearing measured Locus (circle) drawn \& shaded	$\begin{aligned} & 70 \\ & 317 \end{aligned}$	2 2	B1 70 ± 4 B1 317 ± 4 B1 circle $\pm 2 \mathrm{~mm}$ centre Manchester B1 shading with accurate or approximate circle within tolerance

PAPER 5504				
No	Working	Answer	Mark	Notes
9 (a)			1	B1 cao
(b)		Description	1	B1 dynamic relationship or "positive" (correlation)
(c)		Line of best fit	1	Line within overlay region, and to the extent of.
(d)(i)	$280 \mathrm{~g} \rightarrow$	Reading	2	B1 ft from single straight line of positive gradient ($\pm 1 / 2$ square) B1 ft from single straight line of positive gradient ($\pm 1 / 2$ square)
(ii)	120 pages \rightarrow	Reading		
10 (a) (b)	$\begin{aligned} & \frac{1}{6}, \frac{3}{8}, \frac{1}{2}, \frac{2}{3}, \frac{3}{4} \\ & 3 / 5,65 \%, 2 / 3,0.72,3 / 4 \end{aligned}$		2 2	B2 for all correct (B1 for 1 error or all correct but wrong order, or use of a common denominator decimals). B2 for all correct (B1 for 1 error or all correct but wrong order or conversions to decimals oe)
11 (a) (b)	$\begin{aligned} & \text { Sale price }=80 \% \\ & \text { Fun Friday price }=70 \% \text { of } 80 \%=56 \% \text { (oe) } \end{aligned}$	$\begin{aligned} & 182,178,180, \\ & 184 \end{aligned}$	2 2	M1 mean of any three consecutive months, eg $(147+161+238) \div$ 3 oe A1 cao B1 B1 for a fully correct explanation involving a worked example (oe) B1 a partially complete explanation

PAPER 5504				
No	Working	Answer	Mark	Notes
12		Reason	1	B1 makes a mention of bias, either directly, or making reference to an insufficient or biased range of responses.
		Reason	1	B1 make some mention of any one of (a) an insufficient range of responses (b) no mention of money (c) no time frame in the question (d) misunderstanding of "a lot" or "not much" B2
		Question	2	B1 for each of the following upto B2 (a) an improved question eg time frame made clear (b) response boxes (imperfect) (c) response boxes no errors OR For suggesting a generally improved question (a) a question clearly in the context of changes to the canteen (b) at least 3 boxes showing a full range of responses
13	$\begin{aligned} & 20 y-18 y=16-9 \text { oe } \\ & 2 y=7 \end{aligned}$	$31 / 2 \mathrm{oe}$	3	$\begin{aligned} & \text { M1 } 20 y-18 y=16-9 \text { oe } \\ & \text { M1 } 2 y=7 \\ & \text { A1 cao } \end{aligned}$
	$\begin{aligned} & 40-x=3(4+x) \\ & 40-x=12+3 x \\ & 40-12=x+3 x \\ & 4 x=28 \end{aligned}$	7	3	M1 multiplying through by 3: $3 \times \frac{40-x}{3}=3 \times 4+3 \times x$ A1 $40-12=x+3 x$ A1 cao
14 (a)		12(x-4)	1	B1 for $12(x-4)$ or $12 x-48$ or $12 \times x-48$ oe $x=12(x-4)$ gets B0
(b)		18x-48	2	M1 $6 x+" 12(x-4) "$ or $6 x+" 12 x-48$ " A1 ft a linear expression $18 x-48,2(9 x-24), 3(6 x-16), 6(3 x-8)$

PAPER 5504				
No	Working	Answer	Mark	Notes
15	x $x^{3}-2 x$ 4.1 $60.7(21)$ 4.2 $65.6(88)$ 4.3 $70.9(07)$ Accept answer to 1 dp 4.22 $66.7(114)$ or more 4.23 $67.2(269)$ 4.24 $67.7(45)$ 4.25 $68.2(656)$	4.2	4	B2 for trial $4.1 \leq x \leq 4.3$ evaluated (B1 for trial $4<x<5$ evaluated) B1 for different trial $4.225 \leq x \leq 4.25$ evaluated B1 (dep on at least one previous B 1) for 4.2 cao
16 (a) (b)	$1 \div 5 \times 10^{-9}$	$\begin{aligned} & 1.0 \times 10^{-9} \\ & 2 \times 10^{8} \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	B1 accept 1×10^{-9} or just 10^{-9} M1 for $1 \div\left(" 5 \times 10^{-9, "}\right)$ or digit 2 with zeros only seen Condone omission of bracket for M1. A1 cao
$17 \quad \text { (a) }$ (b)	$\frac{6.27 \times 4.52}{4.81+9.63}=\frac{28.3404}{14.44}=1.962631579$	$1.9626 \ldots$ 1.96	2 1	B2 for 1.9626... (B1 for 28.34 or 14.44) B1 ft from (a) as rounded to 1 dp or 2 dp . Do not accept 2, 2.00, but accept 2.0
18		$d=4 n+6$	2	B2 $d=4 n+6$ oe (B1 $d=4 n+k, k$ an integer or $0,4 n+6, n=4 n+6$)
19	$\begin{aligned} & \mathrm{Vol}=\pi \times 3.8^{2} \times 2.5=\pi \times 14.44 \times 2.5 \\ & =45.36 \ldots \times 2.5=113.411 \\ & \text { Mass }=" 113 " \times 1.5=170.1165 \end{aligned}$	170	4	M1 for $\pi \times r^{2} \times 2.5$ where $r=$ is 3.8 or 7.6 A1 if $r=3.8$ M1 for " 113 " $\times 1.5$ A1 for $169.5-170.3$ cao

PAPER 5504				
No	Working	Answer	Mark	Notes
$20 \quad \text { (a) }$	$\begin{aligned} & 10^{2}+6^{2} \text { or } 136 \\ & \sqrt{ }(100+36) \text { or } \sqrt{ } 136=11.66 \ldots \end{aligned}$	11.7	3	M1 $10^{2}+6^{2}$ or 136 seen M1 (dep) $\sqrt{100+36}$ or $\sqrt{136}$ A1 11.66-11.7
(b)	$\begin{aligned} & \cos x=\frac{8}{10} \text { or } 0.8 \\ & x=\cos ^{-1} 0.8=36.869^{\circ} \end{aligned}$	36.9	3	M1 for $\cos =\frac{8}{10}, \cos =0.8(\mathrm{oe})$ M1 (dep) for $\cos ^{-1}$ (oe) A1 for 36.86-36.9
21	$18 x-6 y=99$ $12 x-4 y=66$ $\frac{8 x+6 y=18}{26 x=117}$	$\begin{aligned} & x=4^{1 / 2} \\ & y=-3 \end{aligned}$	4	M1 correct process to eliminate either x or y (condone one error) A1 cao for non - eliminated one. M1 (dep on $1^{\text {st }} \mathrm{M} 1$) for correct substitution of their found value. A1 cao (need both)
22	$\begin{aligned} & \frac{133}{72}=1.8472, \frac{160}{82}=1.9512 \\ & \text { OR } \\ & \frac{72}{133}=0.54135, \frac{82}{160}=0.5125 \\ & \text { OR } \\ & \frac{160}{133}=1.203 \ldots, \frac{82}{72}=1.1388 \ldots . \\ & \frac{O R}{\frac{133}{160}}=0.83125 \ldots, \frac{72}{82}=0.878 \end{aligned}$	$\begin{gathered} 1.84 . . \neq \\ 1.95 . . \\ 1.20 . . \neq \\ 1.13 . . \end{gathered}$	3	M1 for $\underline{133}$ ($=1.8472 \ldots$) oe Accept 1.8, 1.85 72 M1 for $\frac{160}{82}(=1.9512 \ldots)$ oe consistent pairing Accept 2.0, 1.9 OR M1 for $\frac{160}{133}(=1.203 \ldots)$ oe M1 for $\frac{82}{72}(=1.1388)$ oe A1 for enough decimal places to show that the ratios are not equal; since the scale factors are different the shapes cannot be similar. NB Do Not need conclusion

PAPER 5504				
No	Working	Answer	Mark	Notes
23 (a)		$\begin{aligned} & 0.4,0.6 \\ & 0.4,0.6 \\ & 0.4 \end{aligned}$	2	B1 for LHS: (0.6), 0.4 B1 for RHS: $0.6,0.4,0.6,0.4$
(b)	$\begin{aligned} & (30 \times 42)-(25 \times 42.8)=1260-1070=190 \\ & 190 \div 5= \end{aligned}$	38	3	M1 for $(30 \times 42)-(25 \times 42.8)$ or $1260-1070$ or 190 seen M1 (dep) for " 190 " $\div 5$ A1 cao
24 (a)	$\begin{aligned} & £ 12000 \times 0.25=£ 3000 ; £ 12000-£ 3000=£ 9000 \\ & £ 9000 \times 0.25=£ 2250 ; £ 9000-£ 2250=£ 6750 \\ & £ 6750 \times 0.25=£ 1687.50 ; £ 6750-£ 1687.50= \end{aligned}$	£5062.50	3	M1 for $12000 \times 0.75(=9000)$ oe or $£ 3000$ or $£ 23437.50$ seen M1 (dep) for at least two further depreciation calculations (complete steps) A1 cao OR M2 for $12000 \times(0.75)^{3}$ or 5062.50 seen (M1 for $12000 \times(0.75)^{n}, n=2$ or 4)
(b)	$0.8 \times 0.8 \times 0.8 \times 0.8(\mathrm{oe})$	0.4096	2	$\text { M1 } 0.8^{4}(\mathrm{oe})$ A1 cao

PAPER 550				
No	Working	Answer	Mark	Notes
$\begin{array}{ll} \hline 1 & \text { (a)(i) } \\ & \text { (ii) } \\ & \text { (b) } \end{array}$	$\mathrm{LCM}=3 \times 13 \times 17=3 \times 221$	$\begin{aligned} & \hline 2.21 \\ & 0.013 \\ & 663 \end{aligned}$	2 2	B1 for 2.21 B1 for 0.013 M1 for $3 \times 13 \times 17$ oe A1 for 663
2		Tick boxes 1,3 \& 6	3	B1 for $\frac{\pi a b c}{2 d}$; B1 for $2 a^{2} ;$ B1 for $2\left(c^{2}+d^{2}\right)$ (- B1 for each additional expression ticked $(>3$) to a minimum of 0)
$3 \quad \text { (a) }$ (b)	200×0.2 $0.2+0.4$	$\begin{gathered} 40 \\ 0.6 \end{gathered}$	2 2	M1 for 200×0.2 or $\frac{40}{200}$ seen A1 for 40 M1 for $0.2+0.4$ A1 for 0.6
4 (a) (b)	$\begin{array}{\|l\|l\|l} \hline \text { eg } & 2 & \underline{108} \\ & 2 & \underline{54} \\ & 3 & \underline{27} \\ & 3 & \underline{9} \\ & & 3 \end{array}$	$2^{2} \times 3^{3}$	3	M2 for full systematic method of at least 4 divisions by prime numbers oe factor trees; condone 1 calculation error (M1 for 108 written as a correct product with only one nonprime or equivalent division or a full process with 2 calculation errors.) A1 for $2^{2} \times 3^{3}$ (accept $2 \times 2 \times 3 \times 3 \times 3$) B1 for 12
5	Perpendicular from P to interse perpendicular at least 2 cm long	(within tramlines);	2	M1 relevant pair of arcs crossing within tramlines A1 SC M1A0 for full construction of a line perpendicular to $A B$ not through P
6	15×10	$150 \mathrm{~cm}^{3}$.	3	M1 for 15×10 A1 for 150 B1 for cm^{3}
$\begin{gathered} 30 \\ \text { UG015616 } \end{gathered}$				

PAPER 5505				
No	Working	Answer	Mark	Notes
7 (a) (b)(i) (ii) (c) (d) (e)	$\begin{aligned} & 4 x+20+3 x-21 \\ & x^{2}+3 y x+2 x y+6 y^{2} \end{aligned}$	$\begin{aligned} & k^{3} . \\ & 7 x-1 \\ & x^{2}+5 x y+6 y^{2} \\ & (p+q)(p+q+5) \\ & m^{8} \\ & 6 r^{3} t^{6} \end{aligned}$	$\begin{aligned} & 1 \\ & 4 \end{aligned}$ 1 1 2	B1 for k^{3}. M1 for three of 4 terms $4 x+20+3 x-21$ (or better) A1 for $7 x-1$ M1 for three of 4 terms $x^{2}+3 y x+2 x y+6 y^{2}$ A 1 for $x^{2}+5 x y+6 y^{2}$ B1 for $(p+q)(p+q+5)$ B1 for m^{8}. B2 for $6 r^{3} t^{6}$ (B1 for $\ldots . . r^{3} t^{6}$ or for $6 \ldots . t^{6}$)
$8 \quad \text { (i) }$ (ii)	Least length $=100.5$ Greatest length $=101.5$	$\begin{aligned} & 100.5 \\ & 101.5 \end{aligned}$	2	B1 for 100.5 B1 for 101.5; ACCEPT 101.499 or better
9	$6 \frac{2}{5}=\frac{32}{5}$ Area of triangle $=\frac{1}{2} \times \frac{5}{8} \times 6 \frac{2}{5} \quad(=2)$ Length of a side of sq. $=$ $\sqrt{18 \times{ }^{\prime 2} 2^{\prime \prime}} \quad(=6)$ Perimeter of square $=4 \times 6$	24	5	B1 for $6 \frac{2}{5}=\frac{32}{5}$ oe or $3 \frac{1}{5}=\frac{16}{5}$ oe or $\frac{30}{8}+\frac{2}{8}$ oe (or implied by area of triangle $=2$) M1 for $\frac{1}{2} \times \frac{5}{8} \times 6 \frac{2}{5}$ oe M1 for $($ area of square $)=18 \times$ product of two lengths $\mathrm{A} 1=\sqrt{18 \times " 2 "}$ A1 for 24

PAPER 5505				
No	Working	Answer	Mark	Notes
13 (a)			1	B1 for 32 (accept 31.5 to 33.5 inclusive)
(b)			3	B1 for ends of whiskers at 9 and 57 (with a box) B1 for ends of box at 16 and $45 / 46(\pm 0.5)$ B1 for median marked at " 32 " or complete box and whisker diagram drawn with a median inside the box
(c)			2	B1 eg for comparison of medians (ft on diagrams) B1 eg for comparison of (interquartile) ranges (ft on diagram)
14	Reading top to bottom frequencies are 20; 18; $45 ; 52$		2	B2 all correct (B1 for one frequency correct)
$15 \quad \text { (a) }$	$\begin{array}{ll} 1600=p q^{0} . ; 400=p q^{2} & p=1600 \\ q^{2}=0.25 & q=0.5 \end{array}$		3	M1 for either $400=p q^{2}$ or $1600=p q^{0}$ B1 for $p=1600$ A1 for $q=0.5$
(b)	$\begin{equation*} V=p q^{-2} \tag{6400} \end{equation*}$		2	M1 for recognition that $t=-2$ A1 for 6400

PAPER 5505				
No	Working	Answer	Mark	Notes
16	(I) $A B=A C$ (triangle $A B C$ is isosceles) (II) $\mathrm{PB}=\mathrm{PC}$ tangents (from a point to a circle are) equal (III) $\mathrm{AP}=\mathrm{AP}$ (common side) so the 2 triangles are congruent ,SSS.		3	B3 for I, II, III with congruency reason (B2 for any two of I, II or III) (B1 for any one of the I, II or III)
	$\begin{aligned} & B P C=20^{\circ} \\ & P B C(\text { or } P C B)=90-1 / 2 " 20 " \quad\left(=80^{\circ}\right) \\ & B A C=P B C=" 80 " \end{aligned}$	50°	4	B4 for 50° (B3 for $B A C=80^{\circ}$) (B2 for $P B C=80^{\circ}$ or $P C B=80^{\circ}$) (B1 for $A P C=10^{\circ}$ or $B P C=20^{\circ}$ or a middle angle $=90^{\circ}$) SC if clear numerical slip seen eg " $P B C=180-90-10=70$ " then goes on to get correct ft angle $A B C=55$ deduct 1 from total so this cand would get B4-1 = B3
17 (a)	$\begin{aligned} \overrightarrow{O P} & =\overrightarrow{O A}+\overrightarrow{A P} \\ & =\overrightarrow{O A}+\frac{2}{3}(6 \mathbf{c}-6 \mathbf{a}) \\ & =6 \mathbf{a}+4 \mathbf{c}-4 \mathbf{a} \end{aligned}$	$2 \mathbf{a}+4 \mathbf{c}$	3	M 1 for $\overrightarrow{O P}=\overrightarrow{O A}+\overrightarrow{A P}$ or any correct vector journey involving $\overrightarrow{O P}$ M1 for $\overrightarrow{A P}=\frac{2}{3}(6 \mathbf{c}-6 \mathbf{a})$ oe or $\overrightarrow{C P}=\frac{1}{3}(-6 \mathbf{c}+6 \mathbf{a})$ oe or reverse vectors
(b)	$\begin{aligned} \operatorname{Eg} \overrightarrow{O M} & =\overrightarrow{O C}+\overrightarrow{C M}=6 \mathbf{c}+3 \mathbf{a} \\ \overrightarrow{O M} & =1.5 \overrightarrow{O P} \end{aligned}$	$\overrightarrow{O M}=1.5 \overrightarrow{O P} \text { so }$ $O P M$ is a straight line	2	B1 for $\overrightarrow{O M}=6 \mathbf{c}+\frac{1}{2}(6 \mathbf{a})$ or $\overrightarrow{P M}=2 \mathbf{c}+\mathbf{a}$ unsimplified or reverse vectors B1 for a fully correct proof.

PAPER 5505			
No	Working ${ }^{\text {answer }}$	Mark	Notes
(d)	$\frac{7}{n+7} \times \frac{7}{n+7}=\frac{7}{21} \times \frac{7}{21}=\square \quad \frac{1}{9}$	2	M1 for $\frac{7}{n+7} \times \frac{7}{n+7}$ or better or $\mathrm{ft}[\operatorname{answer}(\mathrm{b})(\mathrm{i})]^{2}$ or $1-\frac{4}{9}-\left(\frac{n}{n+7}\right)^{2}$ A1 for $\frac{1}{9}$ oe cao
$20 \quad \text { (a)(i) }$ (ii) (b)	$y=1+\sin x$ $y=2 \sin x$ Stretch parallel to y-axis scale factor 3 Stretch parallel to x-axis scale factor $\frac{1}{2}$	2 3	B1 for $y=1+\sin x$ B1 for $y=2 \sin x$ SC both (i) $\mathrm{f}(x)+1$, (ii) $2 \mathrm{f}(x) \mathrm{B} 1$ M1 for 'stretch' A1 for Stretch parallel to y-axis scale factor 3 oe A1 for Stretch parallel to x-axis scale factor $\frac{1}{2}$ oe SC if M0 award BI for "sf 3 vertically" and "sf $\frac{1}{2}$ horizon."

PAPER 5506				
No	Working	Answer	Mark	Notes
1		Question	2	B1 for each of the following upto B2 (a) an improved question eg time frame made clear (b) response boxes (imperfect) (c) response boxes no errors OR For suggesting a generally improved question (a) a question clearly in the context of changes to the canteen (b) at least 3 boxes showing a full range of responses
2	Locus (circle) drawn \& shaded		2	B1 circle centre Manchester $\pm 2 \mathrm{~mm}$ B1 shading with accurate or approximate circle within tolerance
$3 \quad(a)$ (b)	Sale price $=80 \%$ Fun Friday price $=70 \%$ of $80 \%=56 \%$ (oe)	182, 178, 180, 184	2 2	M1 mean of any three consecutive months, eg (147+ $161+238) \div 3$ oe A1 cao B1 B1 for a fully correct explanation involving a worked example (oe) B1 a partially complete explanation
4	x $x^{3}-2 x$ 4.1 $60.7(21)$ 4.2 $65.6(88)$ 4.3 $70.9(07)$ 4.22 $66.7(114)$ 4.23 $67.2(269)$ 4.24 $67.7(45)$ 4.25 $68.2(656)$	4.2	4	B2 for trial $4.1 \leq x \leq 4.3$ evaluated (B1 for trial $4<x<5$ evaluated) B1 for different trial $4.225 \leq x \leq 4.25$ evaluated B1 (dep on at least one previous B1) for 4.2 cao

PAPER 5506				
No	Working	Answer	Mark	Notes
$5 \quad(a)$ (b)	$1 \div\left(5 \times 10^{-9}\right)$	$\begin{aligned} & 1.0 \times 10^{-9} \\ & 2 \times 10^{8} \end{aligned}$	1 2	B1 accept 1×10^{-9} or just 10^{-9} M1 for $1 \div$ (" $5 \times 10^{-99 ") ~ o r ~ d i g i t ~} 2$ with zeros only seen Condone omission of bracket for M1. A1 cao
6 (a) (b)	$\frac{6.27 \times 4.52}{4.81+9.63}=\frac{28.3404}{14.44}=1.962631579$	$1.9626 \ldots$ 1.96	2 1	B2 for 1.9626... (B1 for $28.34 \ldots$ or 14.44) B1 ft from (a) as rounded to 1 dp or 2 dp . Do not accept 2, 2.00, but accept 2.0
7		$d=4 n+6$	2	B2 $d=4 n+6$ oe (B1 $d=4 n+k, k$ an integer $\neq 6,4 n+6, n=4 n+6$)
8	$\begin{aligned} & \mathrm{Vol}=\pi \times 3.8^{2} \times 2.5=\pi \times 14.44 \times 2.5 \\ & =45.36 \ldots \times 2.5=113.411 \\ & \text { Mass }=" 113 " \times 1.5=170.1165 \end{aligned}$	170	4	M1 for $\pi \times r^{2} \times 2.5$ where $r=$ is 3.8 or 7.6 A1 if $r=3.8$ M1 for " 113 " $\times 1.5$ A1 for $169.5-170.3$ cao

PAPER 5506				
No	Working	Answer	Mark	Notes
$9 \quad \text { (a) }$	$\begin{aligned} & 10^{2}+6^{2} \text { or } 136 \\ & \sqrt{ }(100+36) \text { or } \sqrt{ } 136=11.66 \ldots \end{aligned}$	11.7	3	M1 for $10^{2}+6^{2}$ or 136 seen M1 (dep) $\sqrt{100+36}$ or $\sqrt{136}$ A1 11.66-11.7
(b)	$\begin{aligned} & \operatorname{Cos} x=8 / 10 \text { or } 0.8 \\ & x=\cos ^{-1} 0.8=36.869^{\circ} \end{aligned}$	36.9	3	M1 for $\cos =\frac{8}{10}, \cos =0.8(\mathrm{oe})$ M1 (dep) for $\cos ^{-1}$ (oe) A1 for 36.86-36.9
				M1 Use of sine rule and x found M1 for $x=90-\sin ^{-1}$ (" 0.8 ") A1 for 36.86-36.9
10	$\begin{array}{ll} \hline 18 x-6 y=99 & 12 x-4 y=66 \\ 8 x+6 y=18 & 12 x+9 y=27 \\ 26 x=117 & -13 y=39 \end{array}$	$\begin{aligned} & x=41 / 2 \\ & y=-3 \end{aligned}$	4	M1 correct process to eliminate either x or y (condone one error) A1 cao for non - eliminated one. M1 (dep on $1^{\text {st }}$ M1) for correct substitution of their found value. A1 cao (need both)

PAPER 5506				
No	Working	Answer	Mark	Notes
11	$\begin{aligned} & \frac{133}{72}=1.8472, \frac{160}{82}=1.9512 \\ & \text { OR } \\ & \frac{72}{133}=0.54135, \frac{82}{160}=0.5125 \\ & \text { OR } \\ & \frac{160}{133}=1.203 \ldots, \frac{82}{72}=1.1388 \ldots . \\ & \text { OR } \\ & \frac{133}{160}=0.83125 \ldots, \frac{72}{82}=0.878 \end{aligned}$	$\begin{gathered} 1.84 . . \neq \\ 1.95 . . \\ 1.20 . . \neq \\ 1.13 . . \end{gathered}$	3	M1 for $\frac{133}{72}(=1.8472 \ldots)$ oe Accept $1.8,1.85$ M1 for $\frac{160}{82}(=1.9512 \ldots)$ oe consistent pairing Accept 2.0, 1.9 OR M1 for $\frac{160}{133}(=1.203 \ldots)$ oe M1 for $\frac{82}{72}(=1.1388)$ oe A1 for enough decimal places to show that the ratios are not equal; since the scale factors are different the shapes cannot be similar. NB Do Not need conclusion
$12 \quad \text { (a) }$	$\begin{aligned} & £ 12000 \times 0.25=£ 3000 ; £ 12000-£ 3000=£ 9000 \\ & £ 9000 \times 0.25=£ 2250 ; £ 9000-£ 2250=£ 6750 \\ & £ 6750 \times 0.25=£ 1687.50 ; £ 6750-£ 1687.50= \end{aligned}$	$£ 5062.50$	3	M1 for $12000 \times 0.75(=9000)$ oe or $£ 3000$ or $£ 23437.50$ seen M1 (dep) for at least two further depreciation calculations (complete steps) A1 cao OR M2 for $12000 \times(0.75)^{3}$ or 5062.50 seen (M1 for $12000 \times(0.75)^{n}, n=2$ or 4)
(b)	$0.8 \times 0.8 \times 0.8 \times 0.8(\mathrm{oe})$	0.4096	2	$\begin{aligned} & \text { M1 } 0.8^{4} \text { (oe) } \\ & \text { A1 cao } \end{aligned}$

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{PAPER 5506} \\
\hline No \& Working \& Answer \& Mark \& Notes \\
\hline 13 \& \[
\begin{aligned}
\& r^{2}=\frac{3 \times 10}{\pi h}=\frac{3 \times 10}{\pi 1.5}=\frac{3 \times 10}{4.712 . .}=6.36,6.37 \\
\& r=\sqrt{ } 6.366 \ldots
\end{aligned}
\] \& 2.52-2.54 \& 3 \& \begin{tabular}{l}
M1 for correct rearrangement to give \(r^{2}=\frac{3 V}{\pi h}\) or \(30 \div 4.712\).. or \(6.36-6.37\) \\
Allow 0.3, 0.33 for \(\frac{1}{3}\) \\
M1 (dep) for \(\sqrt{ }\) \\
A1 cao 2.52-2.54
\end{tabular} \\
\hline \begin{tabular}{l}
(b) \\
(c)
\end{tabular} \& \[
\begin{aligned}
\& 0.6 \times 0.6 \\
\& (30 \times 42)-(25 \times 42.8)=(1260-1070=190 \\
\& 190 \div 5=
\end{aligned}
\] \& \begin{tabular}{l}
0.4 \\
0.6,0.4, \\
0.6,0.4 \\
0.36 \\
38
\end{tabular} \& 2

2

3 \& | B1 for LHS: (0.6), 0.4 |
| :--- |
| B1 for RHS: 0.6, 0.4, 0.6, 0.4 |
| M1 $0.6 \times$ " 0.6 " $[0<" 0.6 "<1]$ |
| A1 cao |
| M1 for $(30 \times 42)-(25 \times 42.8)$ or $1260-1070$ or 190 seen |
| M1(dep) for " 190 " $\div 5$ |
| A1 cao 38 |

\hline
\end{tabular}

PAPER 5506				
No	Working	Answer	Mark	Notes
16	$\begin{aligned} & 0.5 \times 3.2 \times 8.4 \times \operatorname{Sin} B=10 \\ & \sin B=0.74404 \ldots \\ & \quad 48.077 \\ & A C^{2}=3.2^{2}+8.4^{2}-2 \times 3.2 \times 8.4 \times \cos B \\ & A C^{2}=44.8815 \ldots . \\ & A C=6.69(936 \ldots) \\ & \text { Perimeter }=18.3 \end{aligned}$ Use the altitude $A D, \frac{h \times 8.4}{2}=10 \Rightarrow h=(2.381)$ $\begin{aligned} & B D=\sqrt{3.2^{2}-h^{2}}=2.139 \\ & D C=6.261 \end{aligned}$ $A C=\sqrt{2.38^{2}++^{\prime} 6.261^{\prime 2}}=6.69(936)$ Perimeter $=18.3$	18.3	6	```M1 for \(0.5 \times 3.2 \times 8.4 \times \sin B(=10)\) A 1 for \(\sin \mathrm{B}=0.74(404 \ldots)\) or \(\mathrm{B}=47.7-48.1\) M1 for \(3.2^{2}+8.4^{2}-2 \times 3.2 \times 8.4 \times \cos\) " 48.077 " M1 (dep) for \(A C^{2}=" 44.8(815) " \ldots .\). with correct order of evaluation A1 \(A C=6.69-6.7\) A1 18.29-18.3 for \(\frac{h \times 8.4}{2}=10 \Rightarrow h=(2.381)\) M1 for \(B D^{2}=3.2^{2}-2.381^{12}\) A1 \(B D=2.1-2.2\) M1 (dep) \(A C^{2}=" 2.381^{1 " 2}+" 6.261^{1 " 2}\) A1 \(A C=6.69-6.7\) A1 18.29-18.3```

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{PAPER 5506} \\
\hline No \& Working \& Answer \& Mark \& Notes \\
\hline \begin{tabular}{l}
(a) \\
(b)
\end{tabular} \& \[
\begin{aligned}
\& (x+8)^{2}=x^{2}+(x+5)^{2} \\
\& x^{2}+16 x+64=2 x^{2}+10 x+25
\end{aligned}
\]
\[
\begin{aligned}
\& \left(+6+\sqrt{ }\left(6^{2}--4 \times 39\right)\right) / 2 \\
\& =(6 \pm \sqrt{ }(36+156)) / 2 \\
\& =(6 \pm \sqrt{ } 192) / 2=(6+13.856) / 2
\end{aligned}
\] \& 9.93 \& 4

3 \& | B1 for angle $O T A=90^{\circ}$ (implied by use of Pythagoras with $O A$ as hypotenuse) |
| :--- |
| M1 $(x+8)^{2}=x^{2}+(x+5)^{2}$ oe |
| M1 for correct squaring of $x+8$ or $x+5$ |
| A1 for completion following correct working |
| M1 for substitution into quadratic formula, allow sign errors in b and c |
| M1 for $x=(6 \pm \sqrt{ } 192) / 2[+$ alone will do] |
| A1 for 9.92-9.93 |
| M1 for ($\mathrm{x}-3)^{2}-9-39$ |
| M1 for $x=3 \pm \sqrt{48}$ [+ alone will do it] |
| A1 for 9.92-9.93 |
| T\&I= 9.93 gets M1,M0,A0 |

\hline 18 \& \[
$$
\begin{aligned}
& E B=60 \times \tan 30^{\circ} \\
& B D=\sqrt{ }\left(60^{2}+60^{2}\right) \\
& \tan B D E=34.64 \div 84.85 \\
& E B=60 \times \tan 30^{\circ} \quad(=34.64) \\
& E D^{2}=60^{2}+\left(\frac{60}{\cos 30}\right)^{2} \\
& E D=\sqrt{8400}=(91.65) \\
& \text { Angle }=\sin ^{-1}\left(\frac{E B}{\sqrt{8400}}\right)=22.2
\end{aligned}
$$

\] \& 22.2° \& 4 \& | M1 for $E B=60 \times \tan 30$ |
| :--- |
| M1 for $B D=\sqrt{ }\left(60^{2}+60^{2}\right)$ |
| M1 for $\tan B D E=" 34.64$ " \div " 84.85 ", |
| A1 22.17-22.21 |
| M1 for $E B=60 \times \tan 30^{\circ}$ oe |
| M1 for fully correct method for $E D$ |
| M1 for $\sin B D E=\left(\frac{' 34.84^{\prime}}{\prime \sqrt{8400^{\prime}}}\right)(\mathrm{oe})$ |
| A1 22.17-22.21 |

\hline
\end{tabular}

PAPER 5506				
No	Working	Answer	Mark	Notes
19 (a) (b)	$\begin{aligned} & x^{2}+6^{2}=25 \\ & x^{2}=-11 \\ & y^{2}=(2 x-2)^{2} \\ & x^{2}+(2 x-2)^{2}=25 \\ & x^{2}+4 x^{2}-8 x+4=25 \\ & 5 x^{2}-8 x+4-25=0 \\ & 5 x^{2}-8 x-21=0 \\ & (5 x+7)(x-3)=0 \text { or } \\ & x=\frac{--8 \pm \sqrt{(-8)^{2}-4 \times 5 \times(-21)}}{10}=\frac{8 \pm \sqrt{484}}{10} \end{aligned}$ So $x=3$, or $x=-1.4$ Subs into either equation gives: $y=4, \text { or } y=-4.8$	$\begin{aligned} & x=3 \\ & y=4 \end{aligned}$ $\begin{aligned} & x=-1.4 \\ & y=-4.8 \end{aligned}$	2 6	M1 substitutes $y=6$ to get $x^{2}+36=25$ A1 deduces $x^{2}=25-36<0$; impossible, (so line does not intersect curve) M1 $y^{2}=(2 x-2)^{2}$ seen or implied A1 $x^{2}+4 x^{2}-8 x+4=25$ (oe expanded form) M1 correct attempt to solve 3 term quadratic equation A1 $x=3, x=-1.4$ M1 (dep on previous Ms) Sub one value of x into either equation gives: A1 $y=4, y=-4.8$ NB: incorrectly matched pairs loses the final A1.

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{PAPER 5506} \\
\hline No \& Working \& Answer \& Mark \& Notes \\
\hline \begin{tabular}{l}
20 (a) \\
(b) \\
(c)
\end{tabular} \& \begin{tabular}{l}
\[
\begin{aligned}
\& 400.005 \div 59.95=6.672310 \\
\& 6.672310 \div 1000 \times 3600=24.02032 \\
\& 399.995 \div 60.05=6.661032 \\
\& 6.661032 \div 1000 \times 3600=23.97972
\end{aligned}
\] \\
24.0 because to 1 dp the answers are the same
\[
\begin{aligned}
\& 177 \times 50 / 477=18.553 \rightarrow 19 \rightarrow 18 \\
\& 111 \times 50 / 477=11.635 \rightarrow 12 \\
\& 86 \times 50 / 477=9.0147 \rightarrow 9 \\
\& 82 \times 50 / 477=8.595 \rightarrow 9 \\
\& 21 \times 50 / 477=2.201 \rightarrow 2
\end{aligned}
\]
\end{tabular} \& \begin{tabular}{l}
\[
\begin{aligned}
\& 24.020 \\
\& 23.980
\end{aligned}
\] \\
18 \\
12 \\
9 \\
9 \\
2
\end{tabular} \& 5

1

3 \& | B1 for 400.005 or 59.95 seen oe |
| :--- |
| M1 for " 400.005 " \div " 59.95 " where " 400.005 " $\in[400.005,400.5]$ and " 59.95 " $\in[59.5,59.95]$ oe |
| B1 for 399.995 or 60.05 seen oe |
| M1 for " 399.995 " \div " 60.05 " where " 399.995 " $\in[399.5,399.95]$ and " 60.05 " $\in[60.05,60.5]$ oe |
| A1 23.979-23.980 and 24.020-24.0204 |
| B1 cao for 24.0 with reason |
| M1 for $\frac{50}{" 477 "} \times 177$ or 111 or 86 or 82 or 21 |
| A1 for all integers or better answers, at least 3 correct Al cao |

\hline | (a) |
| :--- |
| (b) | \& \[

$$
\begin{aligned}
& 40-x=3(4+x) \\
& 40-x=12+3 x \\
& 40-12=x+3 x \\
& 4 x=28 \\
& \frac{2 x(2 x-3)}{(2 x-3)(2 x+3)}=\frac{2 x}{2 x+3}
\end{aligned}
$$

\] \& \[

7
\]

$$
\frac{2 x}{2 x+3}
$$ \& 3

3 \& | M1 multiplying through by 3: $3 \times \frac{40-x}{3}=3 \times 4+3 \times x$ |
| :--- |
| A1 $40-12=x+3 x$ |
| A1 cao |
| B1 for $(2 x-3)(2 x+3)$ |
| B1 for $2 x(2 x-3)$ or $(2 x+0)(2 x+3)$ |
| B1 cao |

\hline
\end{tabular}

PAPER 5506				
No	Working	Answer	Mark	Notes
22	Distance from x axis is y. Distance from $(0,2)$ is $\sqrt{ }\left(x^{2}+(y-2)^{2}\right)$ $\begin{aligned} & y^{2}=x^{2}+(y-2)^{2} \\ & y^{2}=x^{2}+y^{2}-4 y+4 \\ & 0=x^{2}-4 y+4 \\ & 4 y=x^{2}+4 \text { and finish } \end{aligned}$		4	B1 for $(x-0)^{2}+(y-2)^{2}$ or $\sqrt{ }\left((x-0)^{2}+(y-2)^{2}\right)$ oe seen B1 for $\mathrm{y}=\sqrt{(x-0)^{2}+(y-2)^{2}}$ or $\mathrm{y}^{2}=(x-0)^{2}+(y-2)^{2}$ oe B1 $(y-2)^{2}=y^{2}-4 y+4$ seen B1 for $4 y=x^{2}+4$ and finish

Further copies of this publication are available from

Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN
Telephone: 01623467467
Fax: 01623450481
Email: publications@linneydirect.com
Order Code UG015616 J uly 2004
For more information on Edexcel and BTEC qualifications please contact
Customer Services on 08702409800
or http:// enquiries. edexcel. org.uk
or visit our website: www.edexcel.org.uk
London Qualifications Limited, trading as Edexcel. Registered in England and Wales No. 4496750 Registered Office: Stewart House, 32 Russell Square, London WC1B 5DN

