GCSE

Edexcel GCSE

Mathematics A 1387

Summer 2005
Mark scheme

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.
Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.
For further information please call our Customer Services on 0870240 9800, or visit our website at www.edexcel.org.uk.

Summer 2005
Publications Code UG016720
All the material in this publication is copyright © Edexcel Ltd 2005

CONTENTS

Notes on Marking Principles 1
Paper 5521/01 3
Paper 5521/02 12
Paper 5523/03 18
Paper 5523/04 27
Paper 5525/05 37
Paper 5525/06 45

NOTES ON MARKING PRINCIPLES

1 Types of mark

- M marks: method marks
- A marks: accuracy marks
- B marks: unconditional accuracy marks (independent of M marks)

2 Abbreviations
cao - correct answer only
ft - follow through
isw - ignore subsequent working
SC: special case
oe - or equivalent (and appropriate)
dep - dependent
indep - independent

3 No working

If no working is shown then correct answers normally score full marks If no working is shown then incorrect (even though nearly correct) answers score no marks.

4 With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.
If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks. Send the response to review, and discuss each of these situations with your Team Leader.
Any case of suspected misread loses A (and B) marks on that part, but can gain the M marks. Discuss each of these situations with your Team Leader. If working is crossed out and still legible, then it should be given any appropriate marks, as long as it has not been replaced by alternative work. If there is a choice of methods shown, then no marks should be awarded, unless the answer on the answer line makes clear the method that has been used.
If there is no answer on the answer line then check the working for an obvious answer.

5 Follow through marks

Follow through marks which involve a single stage calculation can be awarded without working since you can check the answer yourself, but if ambiguous do not award.
Follow through marks which involve more than one stage of calculation can only be awarded on sight of the relevant working, even if it appears obvious that there is only one way you could get the answer given.

7 Probability
Probability answers must be given a fractions, percentages or decimals. If a candidate gives a decimal equivalent to a probability, this should be written to at least 2 decimal places (unless tenths).
Incorrect notation should lose the accuracy marks, but be awarded any implied method marks.
If a probability answer is given on the answer line using both incorrect and correct notation, award the marks.
If a probability fraction is given then cancelled incorrectly, ignore the incorrectly cancelled answer.

8 Linear equations

Full marks can be gained if the solution alone is given on the answer line, or otherwise unambiguously indicated in working (without contradiction elsewhere). Where the correct solution only is shown substituted, but not identified as the solution, the accuracy mark is lost but any method marks can be awarded.

9 Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded in another.

Paper 5521/01				
No	Working	Answer	Mark	Notes
1 (a) (b) (c)		17252 5400 thousands, 1000,4000	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	B1 cao B1 cao B1
2 (a) (b)		grams, g centimetres, cm millilitres, $\mathrm{m} l, \mathrm{~cm}^{3}$ 5	3 1	B1 oe spelling B1 oe spelling B1 oe spelling B1 cao
3 (a) (b) (c)		106, 102 eg take away 4 46	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	B1 cao ignore extras B1 could be indicated on the diagram B1 cao

Paper 5521/01				
No	Working	Answer	Mark	Notes
6 (a) (b) (c) (d) (e)(i) (ii)		April \& May Daffodil Feb Crocus $\frac{1}{5}$ \times from 56 mm to 64 mm from 0	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 2 \end{aligned}$	B1 for both B1 B1 B1 B1 for $\frac{1}{5}$ oe B1 A single mark on the line, between 56 mm and 64 mm measured from end 0
7 (a) (b) (c) (d) (e)	$\frac{40}{100}$	$\begin{gathered} \frac{2}{5} \\ \\ \\ 0.98 \\ 7500000 \\ 25 \\ 60 \end{gathered}$	2 1 1 1	B2 for $\frac{2}{5}$ B1 for $\frac{40}{100}$ or $\frac{4}{10}$ or $\frac{20}{50}$ or $\frac{8}{20}$ B1 cao B1 cao B1 cao B1 cao

Paper 5521/01				
No	Working	Answer	Mark	Notes
$8 \quad$ (a)(i) (ii) (b)		$(0,2)$ $(4,1)$ $\left(2,1 \frac{1}{2}\right)$ marked	2 1	B1 cao B1 cao B1 Allow 2 mm tolerance from ($2,1 \frac{1}{2}$)
9 (a) (b) (c)	$1.60+0.40$ $1 \div 0.8 \text { or } 2.50 \div 2$	$\begin{aligned} & \hline 2.40 \\ & 2.00 \\ & \\ & 1.25 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$ 2	B1 cao could be indicated on the diagram M1 for appropriate sum or product in $£$ or p or 200 seen eg $1.60+0.40,160+40,0.80+0.80+0.40$, $80+80+40,0.08 \times 25,0.80 \times 2.5,200$ A1 cao M1 for $1.00 \div 0.8$ or $2.50 \div 2$ or 125 or appropriate combination eg $1+\frac{1}{2} \times 0.50$ A1 cao
10 (a) (b) (c)	$30 \times 4+8 \times 2$	hexagon Sum of angles at a point is 360° 136	1 2 2	B1 Condone spelling error B1 for 360 seen B1 for "point", "complete turn" or "a circle" or similar unless accompanied by an incorrect angle SC If neither B1 scored, award B1 for a clear indication that the size of an angle, other than x, is 90° or a right angle (may be on diagram) M1 $30 \times 4+8 \times 2$ or attempt to sum 5 or 6 lengths A1 cao

Paper 5521/01				
No	Working	Answer	Mark	Notes
11 (a) (b) (c) (d)		$\begin{gathered} 13,67,76,103,130 \\ -7,-3,-1,0,5 \\ 0.07,0.072,0.7,0.702, \\ 0.72 \\ 0.6, \frac{2}{3}, 70 \%, \frac{3}{4} \end{gathered}$	5	B1 cao B1 cao B1 cao B2 (B1 for any 3 in correct order)
12 (a) (b)(i) (ii)	$33.56 \div 4$ oe	$\begin{gathered} 1630 \\ 8.39 \\ \\ 9 \end{gathered}$	1	B1 Accept 430 pm Do not accept 430 M1 for $33.56 \div 4$ oe eg $3356 \div 4$, division by 2 twice A1 cao B1 ft from " 8.39 " unless whole number of pounds
$13 \quad \text { (a) }$ (b)	See diagram	$6 \mathrm{~cm}^{2}$ Correct shape	3 2	B2 for 6 cao for numerical answer (B1 for $5.5<$ Area ≤ 7) then B1 (indep) for cm^{2} with or without numerical answer B2 (B1 for any 2 sides correct or a correct enlargement scale factor $\neq 1$ or 2)

Paper 5521/01				
No	Working	Answer	Mark	Notes
(a) (b) (c)	$\begin{aligned} & (4+3) \times 10 \\ & 120 \div 10-3 \end{aligned}$	70 9 $C=10(n+3)$	2 2 3	M1 for $(4+3) \times 10$ A1 cao M1 for $\frac{120}{10}$ or 12 seen eg $12 \times 10=120$ A1 cao B3 for $C=10(n+3)$ oe such as $C=(n+3) \times 10$ (B2 for correct RHS or $C=n+3 \times 10, C=10 n+3$ oe B1 for $C=$ some other linear expression in n or for $n+3 \times 10$, $10 n+3$ etc) Note: $C=n$ scores no marks
15		11 13 16 8 21	2	B2 all correct (B1 for 2 correct)

Paper 5521/01				
No	Working	Answer	Mark	Notes
(a) (b) (c) (d)		$\begin{gathered} 2 p+4 q \\ 2 y^{2} \\ 3 c+4 d \\ 8 p q \end{gathered}$	2 1 2 1	B2 for $2 p+4 q$ (accept $2 \times p$ etc) (B1 for $2 p$ or $4 q$) B1 accept $2 \times y^{2}$ oe inc $2 \times y \times y$ B2 for $3 c+4 d$ (accept $3 \times c$ etc) (B1 for $3 c$ or $4 d$) B1 accept in any order but must not include \times sign
17 (a)(i) (ii) (b)		60 eg top triangle is equilateral 150	2 2	B1 cao B1 for reason M1 for $\frac{180-\text { " } 60 \text { " }}{2}+90$ A1 ft from (a)(i) if $x<90$ SC B1 for " 60 " +90 if $x<90$
18		40	2	M1 for 60×2 or 120 or $60 \div 3$ or 20 or $\frac{120}{180}$ A1 cao
19		correct drawing	2	B2 Condone hidden detail shown with solid lines and missing lines on front face (B1 for a correct sketch with other incorrect sketch(es) or for prism with correct cross section >1 cube wide or for attempt to draw prism with correct cross section or prism with correct plan and side elevation)

Paper 5521/01				
No	Working	Answer	Mark	Notes
20	$\frac{600}{3 \times 10} \text { or } \frac{640}{3.2 \times 10}$	$20-21 \frac{1}{3}$	2	M1 for rounding at least two of the numbers to 1 sf or for sight of $640,3.2$ or 640,32 or 600,32 or 30 seen A1 for 20-21 $\frac{1}{3}$ Note: 20.3125 scores M0 A0
21 (a) (b) (c) (d)		Points plotted positive Line of best fit ~ 1.65	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$ 1	B1 ± 1 full (2 mm) square B1 cao B1 Must pass through $(42.5,1.45),(42.5,1.55)$ AND (67.5, 1.75), (67.5, 1.85) B1 ft from single line segment with positive gradient ± 1 full (2 mm) square
22 (a) (b)	$\begin{aligned} & \text { eg } 50 \times \frac{2000}{500} \\ & \text { eg } 400 \times \frac{750}{500} \end{aligned}$	$\begin{aligned} & 200 \\ & 600 \end{aligned}$	2 2	M1 for $\frac{2000}{500}$ or 4 seen A1 cao M1 for $\frac{750}{500}$ or 1.5 seen or $400+200$ A1 cao

Paper 5521/01				
No	Working	Answer	Mark	Notes
(a) (b)(i) (ii)	$\begin{aligned} & 4 \times 3-2 \times 1 \\ & 12-2 \\ & \\ & \frac{10}{100} \times 680 \text { or } 680 \div 10 \\ & 680+68 \\ & " 748 " \div 50 \text { or } 14.96 \end{aligned}$	10 748 15	3 5	M1 for $3 \times 4(=12)$ or 1×2 or attempt to divide diagram up into rectangles M1 " 12 "- " 2 " or sum of areas of rectangles A1 cao M1 $\frac{10}{100} \times 680$ or $680 \div 10$ or 68 seen M1 (dep) $680+" 68 "$ or M2 for 680×1.10 A1 cao M1 For " 748 " $\div 50$ or 14.96 Accept " 748 " rounded up or down to next 50 followed by $\div 50$ A1 ft from (b)(i) rounded up SC B1 for 680 (seen) leading to 14

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Paper 5521/02} \\
\hline No \& Working \& Answer \& Mark \& Notes \\
\hline \begin{tabular}{l}
(b) \\
(c)
\end{tabular} \& \begin{tabular}{lll}
\& \& \\
Plain \& 111 \& lll \\
Chicken \& 111 \& 3 \\
Bovril \& 111 \& 5 \\
S \& Vin \& 1111 \& 4
\end{tabular} \& \[
\begin{gathered}
4 \\
\text { Plain or } 8
\end{gathered}
\] \& \[
3
\] \& \begin{tabular}{l}
M1 for attempt to tally \\
A1 for 1 frequency correct or all tallies correct A1 for all frequencies correct (accept for /20) \\
B1 ft \\
B1 ft
\end{tabular} \\
\hline \begin{tabular}{l}
2 (a)(i) \\
(ii) \\
(b) \\
(c)
\end{tabular} \& See diagram \& \begin{tabular}{l}
11
16
Correct lines \\
12
\end{tabular} \& \[
\begin{aligned}
\& 2 \\
\& 2 \\
\& 2
\end{aligned}
\] \& \begin{tabular}{l}
B1 cao \\
B1 cao \\
B2 cao for both lines correct \\
(B1 for one line correct) \\
B2 cao \\
(B1 for 11 or 13)
\end{tabular} \\
\hline \begin{tabular}{ll}
\hline 3 \& (a) \\
\& (b) \\
\& (c) \\
\& (d)
\end{tabular} \& \& 580
7.2
Arrow at 48
Arrow at 6.7 \& \[
\begin{aligned}
\& 1 \\
\& 1 \\
\& 1 \\
\& 1 \\
\& \hline
\end{aligned}
\] \& \begin{tabular}{l}
B1 for \(580(\pm 2)\) could be written on line B1 for \(7.2 \pm 0.02\) could be written on line B1 allow \(\pm\) half graduation \\
B1 allow \(\pm\) half graduation
\end{tabular} \\
\hline \[
\begin{array}{ll}
\hline 4 \& \text { (i) }
\end{array}
\]
(ii) \& \& Cylinder Cuboid \& 2 \& \begin{tabular}{l}
B1 ignore spelling \\
B1 ignore spelling
\end{tabular} \\
\hline \begin{tabular}{l}
\[
5
\] \\
(a) \\
(b) \\
(c)
\end{tabular} \& \[
\begin{aligned}
\& £ 10-(£ 2.15+£ 2.30) \\
\& £ 60 \div £ 2.80=21.42857 \\
\& 120 \times 25 \div 100
\end{aligned}
\] \& 5.55

21
30 \& 4
2
2 \& ```
M1 £2.15 +£2.30
A1 for 4.45
M1 £10-"4.45"
A1 cao
M1 for $£ 60 \div 2.80$ or sight of digits $214 \ldots$
A1 for 21
M1 $1 / 4$ of $£ 120$ (oe)
A1 cao
SC B2 for $£ 90$

``` \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Paper 5521/02} \\
\hline No & Working & Answer & Mark & Notes \\
\hline \begin{tabular}{l}
6 (a)(i) \\
(ii) \\
(b)
\end{tabular} & See diagram & \begin{tabular}{l}
\[
143^{0}
\] \\
Obtuse Accurate drawing
\end{tabular} & \begin{tabular}{l}
\[
2
\] \\
1
\end{tabular} & \begin{tabular}{l}
B1 for \(143\left( \pm 2^{0}\right)\) \\
B1 for obtuse (ignore spelling) \\
B1 for accurate drawing \(\pm 2 \mathrm{~mm}\)
\end{tabular} \\
\hline \begin{tabular}{l}
7 (a)(i) \\
(ii) \\
(b) \\
(c) \\
(d)
\end{tabular} & \begin{tabular}{l}
\[
\times 2-1
\] \\
See their diagram
\end{tabular} & \[
\begin{gathered}
\hline 5 \\
23 \\
\\
14,17
\end{gathered}
\] & \[
\begin{aligned}
& 2 \\
& 1 \\
& 1 \\
& 2
\end{aligned}
\] & \begin{tabular}{l}
B1 cao \\
B1 cao \\
B1 for explaining a suitable method \\
B1 for a correct diagram \\
B2 cao for both (B1 for one only ft from their 14)
\end{tabular} \\
\hline \begin{tabular}{l}
\[
8
\] \\
(b) \\
(c) \\
(d)
\end{tabular} & & \begin{tabular}{l}
\[
\begin{gather*}
90  \tag{a}\\
540
\end{gather*}
\] \\
Jupiter
\[
-230
\]
\end{tabular} & \[
\begin{aligned}
& 1 \\
& 1 \\
& 1 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
B1 accept -90 \\
B1 accept -540 \\
B1 accept -150 \\
B1 cao
\end{tabular} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Paper 5521/02} \\
\hline No & Working & Answer & Mark & Notes \\
\hline \[
\begin{array}{ll}
10 & \text { (a) } \\
& \text { (b) }
\end{array}
\] & Height of man \(\times\) " 2.5 " & \[
\begin{gathered}
1.5-2.0 \\
3-6
\end{gathered}
\] & \[
\begin{aligned}
& 1 \\
& 3
\end{aligned}
\] & \begin{tabular}{l}
B1 for height between \(1.5 \mathrm{~m}-2.0 \mathrm{~m}\) inclusive B3 for height between \(3 \mathrm{~m}-6 \mathrm{~m}\) inclusive (B2 for multiplying (a) by a number between 2 and 3 inclusive) \\
(B1 for multiplying (a) by a number)
\end{tabular} \\
\hline 11 & \[
\begin{aligned}
& 61-19=42 \\
& 42 \div 3=14
\end{aligned}
\] & 14 & 2 & \[
\begin{array}{|l}
\hline \text { M1 for }-19 \text { or } 42 \text { seen } \\
\text { A1 cao } \\
\hline
\end{array}
\] \\
\hline \begin{tabular}{l}
12 (a) \\
(b)
\end{tabular} & \[
\begin{aligned}
& 4+5+5+5+4+3+2+1+4+5=38 \\
& \text { mean }=38 \div 10=3.8
\end{aligned}
\] & \[
\begin{gathered}
5 \\
3.8
\end{gathered}
\] & \[
\begin{aligned}
& 1 \\
& 2
\end{aligned}
\] & \begin{tabular}{l}
B1 \\
M1 for attempt to add and \(\div 10\) or 3.7 or 3.9 seen A1 for 3.8 \\
SC B1 for 33.5 seen
\end{tabular} \\
\hline \[
\begin{array}{ll}
13 & \begin{array}{l}
\text { (a) } \\
\text { (b) }
\end{array}
\end{array}
\] & & \[
\begin{array}{r}
3 x \\
x-9 \\
\hline
\end{array}
\] & \[
1
\] & \[
\begin{aligned}
& \text { B1 cao Accept } 3 \times x, x 3, x \times 3, x+x+x \\
& \text { B1 for } x-9 \text { cao } \\
& \hline
\end{aligned}
\] \\
\hline \begin{tabular}{l}
14 (a) \\
(b)
\end{tabular} & 14.44-8.660254038 & \begin{tabular}{l}
\[
5.77974(\ldots)
\] \\
6
\end{tabular} & \[
2
\] & \begin{tabular}{l}
M1 for 14.44 seen or \(8.66(\ldots)\) or 5.7 or 5.8 or better rounded or truncated \\
A1 cao \\
B1 ft
\end{tabular} \\
\hline 15 & \(15 \div 24\) & 62.5 & 2 & M1 for \(15 \div 24\) or \(1500 \div 24\) or sight of digits 625 A1 cao \\
\hline 16 & \(2.10 \times 450\) & 945 & 2 & M1 for digits \(210 \times 450\) or sight of digits 945 A1 cao \\
\hline 17 & See diagram & \[
\begin{aligned}
& 2(y+y) \\
& 2 y+2 y
\end{aligned}
\] & 2 & \[
\begin{array}{|l|}
\hline \text { B1 for } 2(y+y) \\
\text { B1 for } 2 y+2 y \\
\text { (Deduct B1 for each additional tick }(>2) \text { to } \min 0 \text { ) } \\
\hline
\end{array}
\] \\
\hline 18 & \begin{tabular}{l}
\[
360^{\circ} \div 18(=20)
\] \\
Sector angles: \(G=60 ; S=80 ; B=220\); Correct sectors labelled correctly Use angle measurer
\end{tabular} & Angles drawn, labelled & 4 & \begin{tabular}{l}
B4 for fully correct and labelled pie chart (B3 for all angles correct or for a labelled pie chart with 2 correct angles) \\
(B2 for labelled pie chart with 1 correct angle drawn) \\
(B1 for \(360^{\circ} \div 18\) or 20 seen or implied)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Paper 5521/02} \\
\hline No & Working & Answer & Mark & Notes \\
\hline \begin{tabular}{l}
(a) \\
(b) \\
(c)
\end{tabular} & & \begin{tabular}{l}
Correct plane \\
Correct net \\
Correct drawing
\end{tabular} & \begin{tabular}{l}
\[
2
\] \\
2 \\
2
\end{tabular} & \begin{tabular}{l}
B2 for a correct plane defined by showing at least 2 lines. \\
(B1 for a line of symmetry on one face) \\
B2 cao \\
(B1 for 2 equilateral triangles joined appropriately to at least one rectangle or for 1 equilateral triangle joined appropriately to one of 3 rectangles) \\
B1 for two extra sides of length \(6 \mathrm{~cm}( \pm 2 \mathrm{~mm})\) \\
B1 for construction arcs 6 cm from each of the ends of the given line.
\end{tabular} \\
\hline \begin{tabular}{ll}
20 & (a) \\
& (b) \\
& (c)
\end{tabular} & & \[
\begin{aligned}
& 15 \\
& 15
\end{aligned}
\] & \[
\begin{aligned}
& 1 \\
& 1 \\
& 2
\end{aligned}
\] & \begin{tabular}{l}
B1 for \(15( \pm 1)\) \\
B1 for \(15( \pm 0.4)\) \\
B1 horiz. line from \((2,20)\) to \((3,20)\) \\
B1 line from \((3,20)\) to \((5,0)\) or horizontal translation of it SC B1 for any journey ending at \((5,0)\)
\end{tabular} \\
\hline (b) & \[
x+4+x+x+4+x
\]
\[
\begin{aligned}
& 4 x+8=54 \\
& 4 x=46 \\
& x=11.5 \\
& \text { Length }=" 11.5 "+4
\end{aligned}
\] & \[
\begin{gather*}
4 x+8  \tag{a}\\
15.5
\end{gather*}
\] & \[
\begin{aligned}
& 2 \\
& 3
\end{aligned}
\] & \begin{tabular}{l}
M1 for attempting to add \(x, x+4, x, x+4\) may be implied by \(4 x+a(a>0)\) \\
A1 for \(4 x+8\) or \(4(x+2)\) \\
M1 for " \(4 x+8\) " \(=54\) \\
A1 cao for 11.5 seen \\
B1 ft for " 11.5 " +4
\end{tabular} \\
\hline 22 & \[
\begin{aligned}
& 0.4+0.15 \\
& 1-" 0.55 "
\end{aligned}
\] & 0.45 & 2 & M1 for 1 - sum A1 for 0.45 o.e. SC B1 for 0.81 \\
\hline \begin{tabular}{l}
23 (a) \\
(b)
\end{tabular} & \(\pi \times 2.45\) & \[
\begin{aligned}
& \hline 3: 1 \\
& 7.7
\end{aligned}
\] & \[
\begin{aligned}
& 1 \\
& 2
\end{aligned}
\] & \begin{tabular}{l}
B1 cao \\
M1 for \(\pi \times 2.45\) (accept \(\pi\) as 3.1 or better) \\
A1 for 7.59 to 7.70
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Paper 5521/02} \\
\hline No & Working & Answer & Mark & Notes \\
\hline 24 & \(7 \times 10000\) & 70000 & 2 & \begin{tabular}{l}
M1 for \(7 \times 10000\) or \(7 \times 100 \times 100\) \\
A1 cao
\end{tabular} \\
\hline 25 & \(5.40 \div 3 \times 7\) & 12.60 & 3 & \begin{tabular}{l}
M1 for \(5.40 \div 3\) or sight of 1.8 M1 dep for " 1.80 " \(\times 7\) \\
A1 for 12.6 or equivalent
\end{tabular} \\
\hline 26 & \[
\begin{aligned}
& 7.60 \times \frac{17.5}{100}=1.33 \\
& 7.60+1.33=8.93 \\
& 1650 \times \text { " } 8.93 "
\end{aligned}
\] & £14734.50 & 4 & \begin{tabular}{l}
M1 for \(7.60 \times \frac{17.5}{100}\) or 1.33 seen or \(7.60 \times 1.175\) (oe) \\
(Award M1 for \(10 \%, 5 \%\) and \(21 / 2 \%\) correctly calculated) \\
A1 for 8.93 or 893 \\
M1 for 1650 x " 8.93 " or digits 147345 seen \\
A1 cao Accept 14734.5 \\
Alternative \\
M1 for \(1650 \times 7.6(0)\) or 12540 seen \\
M1 for " 12540 ' \(\times \frac{17.5}{100}\) or 2194.5 seen or " 12540 " \(\times 1.175\) \\
(oe) \\
(Award M1 for \(10 \%, 5 \%\) and \(2 \frac{1}{2} \%\) correctly calculated) M1 for " 12540 " + " 2194.5 " (dep on both previous method marks) or digits 147345 seen \\
A1 cao accept 14734.5
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Paper 5523/03} \\
\hline No & Working & Answer & Mark & Notes \\
\hline 1 & & Correct shape & 2 & \begin{tabular}{l}
B2 \\
B1 for any 2 sides correct, or a correct enlargement scale factor \(\neq 1\) or 2 .
\end{tabular} \\
\hline \begin{tabular}{l}
\[
2
\] \\
(a) \\
(b)
\end{tabular} & & \begin{tabular}{cc}
11 & 13 \\
16 & \\
& \\
& \\
& \\
\multicolumn{3}{c}{} & 21 \\
& \(\frac{31}{80}\) \\
\hline
\end{tabular} & \begin{tabular}{l}
\[
2
\] \\
1
\end{tabular} & \begin{tabular}{l}
B2 all correct \\
(B1 for 2 correct) sign \\
B1 oe
\end{tabular} \\
\hline \begin{tabular}{l}
(b) \\
(c) \\
(d)
\end{tabular} & & \[
\begin{gathered}
2 p+3 q \\
2 y^{2} \\
3 c+4 d \\
8 p q
\end{gathered}
\] & \begin{tabular}{l}
\[
2
\] \\
1 \\
2 \\
1
\end{tabular} & \begin{tabular}{l}
B2 for \(2 p+3 q\) (accept \(2 \times p\) etc) \\
(B1 for \(2 p\) or \(3 q\) or \(2 p 3 q\) ) \\
B1 accept \(2 \times y^{2}\) or \(2 \times y \times y\) \\
B2 for \(3 c+4 d\) (accept \(3 \times c\) etc) \\
(B1 for \(3 c\) or \(4 d\) or \(3 c 4 d\) ) \\
B1 accept in any order but must not include \(\times\)
\end{tabular} \\
\hline \begin{tabular}{l}
\(4 \quad\) (a)(i) \\
(ii) \\
(b)
\end{tabular} & & 60 eg top triangle is equilateral 150 & \[
2
\]
\[
2
\] & \begin{tabular}{l}
B1 cao \\
B1 for reason
\[
\text { M1 } \frac{(180-" 60 ")}{2}+90
\] \\
A1 ft from (a)(i) if \(x<90^{\circ}\) \\
SC:B1 for answer from " 60 " +90 if \(x<90^{\circ}\)
\end{tabular} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Paper 5523/03} \\
\hline No & Working & Answer & Mark & Notes \\
\hline 7 & \begin{tabular}{l}
1 \\
9
\end{tabular} & 190.12 & 3 & \begin{tabular}{l}
M1 for an attempt to multiply the units and tens, or correct partitioning \\
M1 complete correct method (condone one arithmetic error) \\
A1 for 190.12 cao \\
OR \\
M1 for putting the numbers in a grid \\
M1 for multiplying out and addition (condone one error) \\
A1 answer shown with point \\
OR \\
M1 for correct partitioning \\
M1 \(679 \times 20\) and \(679 \times 8\) calculated oe (condone one error) \\
A1 cao
\end{tabular} \\
\hline \begin{tabular}{l}
\[
8
\] \\
(a) \\
(b) \\
(c) \\
(d)
\end{tabular} & & Points plotted positive Line of best fit approx 1.65 &  & \begin{tabular}{l}
B1 \(\pm 1\) full ( 2 mm ) square \\
B1 cao \\
B1 must pass through (42.5, 1.45), (42.5, 1.55) AND (67.5, 1.75), (67.5, 1.85) \\
B1 ft from single line segment with positive gradient \(\pm 1\) full ( 2 mm ) square
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Paper 5523/03} \\
\hline No & Working & Answer & Mark & Notes \\
\hline \begin{tabular}{l}
\[
9
\] \\
(a) \\
(b)
\end{tabular} & \[
\begin{aligned}
& \text { eg } 50 \times \frac{2000}{500} \\
& \text { eg } 400 \times \frac{750}{500}
\end{aligned}
\] & \[
\begin{aligned}
& 200 \\
& 600
\end{aligned}
\] & \[
\begin{aligned}
& 2 \\
& 2
\end{aligned}
\] & \begin{tabular}{l}
M1 \(2000 \div 500\) or 4 seen \\
A1 cao \\
M1 \(750 \div 500\) or 1.5 seen or \(400+200\) \\
A1 cao
\end{tabular} \\
\hline 10 & & \(C=10(n+3)\) & 3 & \begin{tabular}{l}
B3 for \(C=10(n+3)\) oe such as \(C=(n+3) \times 10\) \\
(B2 for correct RHS or \(C=n+3 \times 10, C=10 n+3\) etc \\
B1 for \(\mathrm{C}=\) some other linear expression in \(n\) or \(n+3 \times 10\), \\
\(10 n+3\) etc) \\
NB: \(\mathrm{C}=n\) scores no marks
\end{tabular} \\
\hline \begin{tabular}{l}
\[
\begin{array}{ll}
\hline 11 \quad \text { (a) }
\end{array}
\] \\
(b)
\end{tabular} & \(x^{2}-4 x+7 x-28\) & \[
p(p+\sigma)
\]
\[
x^{2}+3 x-28
\] & \[
2
\]
\[
2
\] & \begin{tabular}{l}
B2 for \(p(p+\sigma)\) or \(p \times(p+\sigma)\) \\
(B1 for \(p(a p+b)\) where \(a, b\) are numbers or \(p+6\) seen on it's own, or part of an expression) \\
M1 for 4 terms correct ignoring signs (e.g \(x^{2}, 4 x, 7 x, 28\) ) or 3 terms with correct signs (e.g \(x^{2},-4 x, 7 x,-28\) ) \\
A1 cao
\end{tabular} \\
\hline 12 &  & correct drawing & 2 & \begin{tabular}{l}
B2. Condone hidden detail shown with solid lines, or missing lines on front face. \\
(B1 for : \\
one sketch correct with other sketches incorrect cross-section correct with depth > 1 cube, correct plan and side elevation)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Paper 5523/03} \\
\hline No & Working & Answer & Mark & Notes \\
\hline 13 & \[
\frac{600}{3 \times 10} \text { or } \frac{640}{3.2 \times 10}
\] & \[
20 \text { to } 21 \frac{1}{3}
\] & 2 & \begin{tabular}{l}
M1 For rounding at least two of the numbers to 1 sf , or for sight of \(640,3.2\) or 640,32 or 600,32 or 30 seen \\
A1 for 20 to \(21 \frac{1}{3}\) \\
NB: 20.3125 scores M0 A0
\end{tabular} \\
\hline \begin{tabular}{l}
14 (a) \\
(b)
\end{tabular} & & correct reflection reflection in \(y=x\) & \[
\begin{aligned}
& 2 \\
& 2
\end{aligned}
\] & \begin{tabular}{l}
B2 (B1 reflection in line other than \(x=3\) ) \\
B2 cao Accept the word "reflected" \\
(B1 any statement including the word "reflection")
\end{tabular} \\
\hline \begin{tabular}{l}
\[
15 \quad \text { (a)(i) }
\] \\
(ii) \\
(b)
\end{tabular} & \(x+y=10\) and \(x-y=4\) & \[
\begin{gathered}
5^{6} \\
5^{3} \\
x=7 \\
y=3
\end{gathered}
\] & \[
\begin{aligned}
& 1 \\
& 1 \\
& 3
\end{aligned}
\] & \begin{tabular}{l}
B1 accept \(15125,5^{4+2}\) \\
B1 accept \(125,5^{9-6}\) \\
M1 for either \(x+y=10\) or \(x-y=4\) \\
A2 for both values correct [(A1 for one value correct) \\
If M0, award B3 for both values correct or B2 for one value correct, otherwise B0] \\
SC B2 for \(x=3\) and \(y=7\)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Paper 5523/03} \\
\hline No & Working & Answer & Mark & Notes \\
\hline \begin{tabular}{l}
(a) \\
(b)
\end{tabular} & \[
\begin{aligned}
& 5-3 x=2 x+2 \\
& 5-2=2 x+3 x
\end{aligned}
\] & \[
\begin{gathered}
\frac{3}{5} \\
-3,-2,-1,0,1,2
\end{gathered}
\] & \[
3
\] & \begin{tabular}{l}
B1 for \(2 x+2\) seen OR \(2.5-1.5 x=x+1\) \\
M1 for correct rearrangement of 4 terms \\
A1 for \(\frac{3}{5}\) oe \\
B2 (B1 for 5 correct and not more than one incorrect integers)
\end{tabular} \\
\hline 17 & & question + response boxes oe & 2 & \begin{tabular}{l}
\(1^{\text {st }}\) aspect: One question with time period (eg each night); ignore other questions. \\
\(2^{\text {nd }}\) aspect: Response list (at least two), not overlapping.* \\
\(3^{\text {rd }}\) aspect: Some mention of units (eg hours) in either question or responses \\
Award B2 for all three aspects, or B1 for just two aspects. * \(0-1,2-3,4-5\) is OK , but \(0-1,1-2,2-3\) is not OK .
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Paper 5523/03} \\
\hline No & Working & Answer & Mark & Notes \\
\hline \begin{tabular}{l}
(a) \\
(b)
\end{tabular} & \[
\begin{aligned}
& \frac{2}{3} \times \frac{3}{4}=\frac{6}{12} \\
& 1+2+\frac{8}{12}+\frac{9}{12}
\end{aligned}
\] & \[
\begin{array}{r}
\frac{1}{2} \\
4 \frac{5}{12}
\end{array}
\] & \begin{tabular}{l}
\[
2
\] \\
3
\end{tabular} & \begin{tabular}{l}
M1 for \(\frac{6}{12}\) or \(\frac{3}{6}\) or \(\frac{2 \times 3}{3 \times 4}\) \\
A1 accept 0.5 \\
M1 for attempt to convert to fractions with common denominator e.g two fractions, denominator of 12 \\
A1 correct conversion : \(\frac{8}{12}\) and \(\frac{9}{12}\), \\
or \(\frac{20}{12}\) and \(\frac{33}{12}\) seen (oe) \\
A1 cao for \(4 \frac{5}{12}\) \\
OR \\
attempts to convert to decimals: must use at least 2dp M1 \(0.66+0.75\) (or \(1.66+2.75\) ) or \(0.67+0.75\) etc \\
A1 4.41, 4.417, 4.416 \\
A1 4.416 (recurring)
\end{tabular} \\
\hline 19 & \[
\begin{aligned}
& 2 \times \frac{1}{2} \times 6 \times 8 \text { or } 48 \\
& 8 \times 9+6 \times 9+10 \times 9 \\
& \text { or } 72+54+90
\end{aligned}
\] & \[
\begin{aligned}
& 264 \\
& \mathrm{~cm}^{2}
\end{aligned}
\] & 4 & \begin{tabular}{l}
M1 attempt to find the area of one face;
\[
\frac{1}{2} \times 6 \times 8 \text { or }(8 \times 9) \text { or }(6 \times 9) \text { or }(10 \times 9) \text { or } 72 \text { or } 54 \text { or } 90 \text { or } 24
\] \\
M1 all five faces with an intention to add \\
A1 cao numerical answer of 264 \\
B1 (indep) \(\mathrm{cm}^{2}\) with or without numerical answer
\end{tabular} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Paper 5523/03} \\
\hline No & Working & Answer & Mark & Notes \\
\hline 25 & \[
\frac{5--1}{-1-2}=-2
\] & \(y=-2 x+5\) & 4 & \begin{tabular}{l}
M1 for clear attempt to find gradient eg fraction with \(-1,5\) in numerator, \(2,-1\) in denominator \\
A1 for -2 \\
B2 ft for \(y=\) " \(-2 " x+5\) oe (eg \(y=\frac{-6}{3} x+5\) ) \\
(B1 for \(y=m x+5\) or,\(-2 x+5\) or \(y="-2 " x+c\) )
\end{tabular} \\
\hline \begin{tabular}{l}
\[
26 \quad \text { (a)(i) }
\] \\
(ii) \\
(b)
\end{tabular} & \(360-90-90-2150 "\) & \[
\begin{aligned}
& 150 \\
& 30
\end{aligned}
\] & 2
3 & \begin{tabular}{l}
B1 accept 150 or 210 \\
B1 for angle at the centre is twice the angle at the circumference \\
B1 identifies angle between radius and tangent as \(90^{\circ}\) (may be in working or on diagram) \\
M1 360 - 90-90-'150' \\
A1 ft from (a)(i) excluding a negative answer OR \\
B1 for 90 \\
M1 for \(2 \times\left(180-90-\frac{150}{2}^{\prime \prime}\right)\) \\
A1 ft from (a)(i) excluding a negative answer OR \\
B3 for 180-(a)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Paper 5523/04} \\
\hline No & Working & Answer & Mark & Notes \\
\hline \begin{tabular}{l}
\[
1
\] \\
(a) \\
(b)
\end{tabular} & 14.44-8.660254038 & 5.77974(....)
\[
6
\] & \begin{tabular}{l}
\[
2
\] \\
1
\end{tabular} & \begin{tabular}{l}
M1 for 14.44 seen or \(8.66(\ldots .\).\() seen or 5.7\) or 5.8 or better, rounded or truncated \\
A1 cao \\
B1 ft
\end{tabular} \\
\hline 2 & \(15 \div 24\) & 62.5 & 2 & M1 for \(15 \div 24\) or \(1500 \div 24\) or sight of digits 625 A1 cao \\
\hline \begin{tabular}{l}
\[
\begin{equation*}
3 \tag{a}
\end{equation*}
\] \\
(b)
\end{tabular} & \[
\begin{aligned}
& 2.10 \times 450 \\
& 63 \div 2.10
\end{aligned}
\] & \[
\begin{gathered}
945 \\
30
\end{gathered}
\] & 2
2 & \begin{tabular}{l}
M1 for digits \(210 \times 450\) or sight of digits 945 \\
A1 cao \\
M1 for \(63 \div\) digits 210 \\
A1 cao
\end{tabular} \\
\hline 4 & See diagram & \[
\begin{aligned}
& 2(y+y) \\
& 2 y+2 y
\end{aligned}
\] & 2 & \begin{tabular}{l}
B1 for \(2(y+y)\) \\
B1 for \(2 y+2 y\) \\
(Deduct B1 for each additional tick ( \(>2\) ) to min 0)
\end{tabular} \\
\hline 5 & \begin{tabular}{l}
\[
360^{\circ} \div 18(=20)
\] \\
Sector angles: \(G=60 ; S=80 ; B=220\); Correct sectors labelled correctly Use angle measurer
\end{tabular} & Angles drawn, labelled & 4 & \begin{tabular}{l}
B4 for fully correct and labelled pie chart \\
(B3 for all angles correct or for a labelled pie chart with two angles correct) \\
(B2 for labelled pie chart with one correct angle drawn) \\
(B1 for \(360 \div 18\) or 20 seen or implied)
\end{tabular} \\
\hline \begin{tabular}{l}
\[
6
\] \\
(a) \\
(b) \\
(c)
\end{tabular} & & \begin{tabular}{l}
Correct plane \\
Correct net \\
Correct drawing
\end{tabular} & \begin{tabular}{l}
\[
2
\] \\
2 \\
2
\end{tabular} & \begin{tabular}{l}
B2 for a correct plane defined by showing at least 2 lines. \\
(B1 for a line of symmetry on one face) \\
B2 cao \\
(B1 for 2 equilateral triangles joined appropriately to at least one rectangle or for 1 equilateral triangle joined appropriately to one of the three rectangles) \\
B1 for two extra sides of length \(6 \mathrm{~cm}( \pm 2 \mathrm{~mm})\) \\
B1 for construction arcs 6 cm from each of the ends of the given line
\end{tabular} \\
\hline 7 & \[
\begin{aligned}
& 61-19=42 \\
& 42 \div 3=14
\end{aligned}
\] & 14 & 2 & M1 for -19 or 42 seen or \(3 x+19\) A1 cao \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Paper 5523/04} \\
\hline No & Working & Answer & Mark & Notes \\
\hline \begin{tabular}{ll}
8 & (a) \\
& (b) \\
& (c)
\end{tabular} & & \[
\begin{aligned}
& 15 \\
& 15
\end{aligned}
\] & \[
\begin{aligned}
& 1 \\
& 1 \\
& 2
\end{aligned}
\] & \begin{tabular}{l}
B1 cao for \(15( \pm 1)\) \\
B1 cao for \(15( \pm 0.4)\) \\
B1 horiz. line from \((2,20)\) to \((3,20)\) \\
B1 line from \((3,20)\) to \((5,0)\) or horiz. translation of it SC: B1 for any journey ending at \((5,0)\)
\end{tabular} \\
\hline \begin{tabular}{l}
\[
9
\] \\
(a) \\
(b)
\end{tabular} & \[
x+4+x+x+4+x
\]
\[
\begin{aligned}
& 4 x+8=54 \\
& 4 x=46 \\
& x=11.5 \\
& \text { Length }=" 11.5 "+4
\end{aligned}
\] & \[
4 x+8
\]
\[
15.5
\] & \[
2
\]
\[
3
\] & \begin{tabular}{l}
M1 for attempting to add \(x+4, x, x+4, x\) may be implied by \(4 x+a, a>0\) \\
A1 for \(4 x+8\) or \(4(x+2)\) \\
M1 for " \(4 x+8 "=54\) \\
A1 cao for 11.5 seen \\
B1 ft for " 11.5 " +4
\end{tabular} \\
\hline 10 & \[
\begin{aligned}
& 0.4+0.15 \\
& 1-0.55
\end{aligned}
\] & 0.45 & 2 & M1 for 1 - sum A1 for 0.45 oe SC: B1 for 0.81 \\
\hline \begin{tabular}{l}
11 (a) \\
(b)
\end{tabular} & \(\pi \times 2.45\) & \[
\begin{aligned}
& \hline 3: 1 \\
& 7.7
\end{aligned}
\] & \[
\begin{aligned}
& 1 \\
& 2
\end{aligned}
\] & \begin{tabular}{l}
B1 cao \\
M1 for \(\pi \times 2.45\) (accept \(\pi\) as 3.1 or better) \\
A1 for 7.59 to 7.70
\end{tabular} \\
\hline 12 & \(7 \times 10000\) & 70000 & 2 & \begin{tabular}{l}
M1 for \(7 \times 10000\) or \(7 \times 100 \times 100\) \\
A1 cao
\end{tabular} \\
\hline 13 & \(5.40 \div 3 \times 7\) & 12.60 & 3 & \begin{tabular}{l}
M1 for \(5.40 \div 3\) or sight of 1.8 \\
M1 (dep) for " 1.80 " \(\times 7\) \\
A1 for 12.6 or equivalent
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Paper 5523/04} \\
\hline No & Working & Answer & Mark & Notes \\
\hline 14 & \[
\begin{aligned}
& 7.60 \times \frac{17.5}{100}=1.33 \\
& 7.60+1.33=8.93 \\
& 1650 \times \text { " } 8.93 \text { " }
\end{aligned}
\] & £14734.50 & 4 & \begin{tabular}{l}
M1 for \(7.60 \times \frac{17.5}{100}\) or 1.33 seen or \(7.60 \times 1.175\) (oe) \\
(Award M1 for \(10 \%, 5 \%\) and \(21 / 2 \%\) correctly calculated) \\
A1 for 8.93 or 893 \\
M1 for \(1650 \times\) " 8.93 " or digits 147345 seen \\
A1 cao Accept 14734.5 \\
OR \\
M1 for \(1650 \times 7.6\) or 12540 seen \\
M1 for " 12540 " \(\times \frac{17.5}{100}\) or 2194.5 seen or \\
" 12540 ' \(\times 1.175\) (oe) \\
(Award M1 for \(10 \%, 5 \%\), and \(2 \frac{1}{2} \%\) correctly calculated) \\
M1 for " 12540 " + " 2194.5 " (dep on both previous M marks) \\
or digits 147345 seen \\
A1 cao accept 14734.5
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Paper 5523/04} \\
\hline No & Working & Answer & Mark & Notes \\
\hline 15 & \(285 \times 1000 /(60 \times 60)=79.1 \dot{6}\) & & 3 & \begin{tabular}{l}
M2 for \(285 \times 1000 \div 60 \div 60\) \\
or \(80 \times 60 \times 60 \div 1000\) \\
or for a correct method to obtain two comparable values e.g \\
\(80 \times 60 \times 60\) and \(285 \times 1000\) \\
(M1 for \(285 \div 60 \div 60\) or \(0.079(\ldots\).) seen \\
or \(80 \times 60 \times 60\) or 288000 seen \\
or for \(285 \times 1000\) or 285000 seen \\
or \(80 \div 1000\) or 0.08 seen) \\
A1 for 288 or 79.(....) or for two correctly calculated comparable values e.g 288000 and 285000
\end{tabular} \\
\hline \[
16 \quad \text { (a) }
\] & \[
\begin{aligned}
& 4 x+12=6 \\
& 4 x=-6
\end{aligned}
\] & \[
-1.5
\] & 3 & \begin{tabular}{l}
B1 for \(4 x+12\) or \(x+3=\frac{6}{4}\) \\
M1 for a correct re-arrangement of their 3 terms to isolate \(4 x\) or \(x\) \\
A1 for -1.5 oe
\end{tabular} \\
\hline (b) & \[
v-u=5 t
\] & \[
\frac{v-u}{5}
\] & 2 & M1 for isolating \(\pm 5 t\) or \(\pm t\) or for dividing through by 5 A1 oe \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Paper 5523/04} \\
\hline No & Working & Answer & Mark & Notes \\
\hline 17 & \[
\begin{aligned}
& 3 \rightarrow 15 \\
& 4 \rightarrow 48 \\
& 3.1 \rightarrow 17.3(91) \\
& 3.2 \rightarrow 19.9(68) \\
& 3.3 \rightarrow 22.7(37) \\
& 3.4 \rightarrow 25.7(04) \\
& 3.5 \rightarrow 28.8(75) \\
& 3.4 \rightarrow 25.7(04) \\
& 3.3 \rightarrow 22.7(37) \\
& 3.35 \rightarrow 24.1(95375)
\end{aligned}
\] & 3.3 & 4 & \begin{tabular}{l}
B2 for trial between 3.3 and 3.4 inclusive \\
(B1 for trial between 3 and 4 inclusive) \\
B1 for different trial between 3.3 and 3.4 exclusive \\
B1 (dep on at least one previous B1) for 3.3 \\
NB trials should be evaluated to at least 1 dp truncated or rounded
\end{tabular} \\
\hline \begin{tabular}{l}
\[
18
\] \\
(a) \\
(b)
\end{tabular} & \[
\begin{aligned}
& 36 \div(7+3+2) \\
& " 3 " \times 7 \\
& 51.5 \times \frac{8.5}{100}=4.3775 \\
& 51.5-4.3775=47.1225
\end{aligned}
\] & \begin{tabular}{l}
\[
21
\] \\
47 or 47.1 or 47.12
\end{tabular} & 3
4 & \begin{tabular}{l}
M1 for \(36 \div(7+3+2)\) \\
M1 (dep) for " 3 " \(\times 7\) or 3 or 2 \\
A1 cao \\
M1 for \(51.5 \times \frac{8.5}{100}\) or \(4.37(75)\) seen \\
M1 (dep) for 51.5 - "4.37(75)" \\
A1 for 47 or better \\
B1 (indep) for rounding their answer correctly to the nearest whole number or 1 or \(2 \mathrm{~d} . \mathrm{p}\) \\
OR \\
M1 for \(51.5 \times \frac{100-8.5}{100}\) \\
M1 for \(51.5 \times " 0.915\) " or \(0.515 \times " 91.5 "\) \\
A1 for 47 or better \\
B1 (indep) for rounding their answer correct to the nearest whole number or 1 or \(2 \mathrm{~d} . \mathrm{p}\)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Paper 5523/04} \\
\hline No & Working & Answer & Mark & Notes \\
\hline 19 (a) & & Angle in a semicircle & 1 & B1 oe \\
\hline (b) & \[
\begin{aligned}
& 12^{2}+16^{2}=400 \\
& \sqrt{400}=20
\end{aligned}
\] & \[
20
\] & 3 & \begin{tabular}{l}
M1 for \(12^{2}+16^{2}\) \\
M1 for \(\sqrt{144+256}\) \\
A1 cao
\end{tabular} \\
\hline (c) & \(\pi \times 10^{2}\) & 314 & 3 & \begin{tabular}{l}
M1 for \(\pi \times\left(\frac{" 20 "}{2}\right)^{2}\) \\
M1 (indep) for correct order of evaluation of \(\pi \times r^{2}\) for any \(r\) A1 for 314-315 inclusive
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Paper 5523/04} \\
\hline No & Working & Answer & Mark & Notes \\
\hline 20 (a) & \[
\begin{aligned}
& (1 \times 10)+(3 \times 15)+(5 \times 30)+(7 \times 35)+ \\
& (9 \times 25)+(11 \times 5)=730 \\
& " 730 " \div 120=6.08333
\end{aligned}
\] & 6.08 & 4 & \begin{tabular}{l}
M1 for use of \(f x\) with \(x\) consistent within intervals (including end points) \\
M1 (dep) for use of midpoints \\
M1 (dep on \(1^{\text {st }} \mathrm{M} 1\) ) for use of \(\frac{\sum f x}{\sum f}\) \\
A1 6.08 to 6.085
\end{tabular} \\
\hline (b) & & (10),25,55, 90, 115, 120 & 1 & B1 for all correct \\
\hline (c) & & graph & 2 & \begin{tabular}{l}
B1 ft for 5 or 6 points plotted correctly \(\pm 1\) full ( 2 mm ) square at the end of interval dep on sensible table (condone 1 addition error) \\
B1(dep) for points joined by curve or line segments provided no gradient is negative - ignore any part of graph outside range of their points. \\
(SC: B1 if 5 or 6 points plotted not at end but consistent within each interval and joined)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Paper 5523/04} \\
\hline No & Working & Answer & Mark & Notes \\
\hline (d) & & 72-74 & 2 & M1 (ft dep on graph being cf) for reading from graph at 7 A1 ft \(\pm 1\) full ( 2 mm ) square Or B2 for 72-74 \\
\hline \begin{tabular}{l}
21 (a) \\
(b) \\
(c) \\
(d)
\end{tabular} & & \[
\begin{gathered}
a^{7} \\
15 x^{3} y^{4} \\
x-1 \\
(x+3)(x-3)
\end{gathered}
\] & \[
\begin{aligned}
& 1 \\
& 2 \\
& 1 \\
& 1
\end{aligned}
\] &  \\
\hline 22 & \[
\begin{aligned}
& 80 \%=220 \\
& 220 \div 80 \times 100
\end{aligned}
\] & 275 & 3 & M1 for recognising that \(80 \%\) is equivalent to 220 M1 for \(220 \div 80 \times 100\) oe A1 cao \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Paper 5523/04} \\
\hline No & Working & Answer & Mark & Notes \\
\hline 23 & & \[
\begin{gathered}
x=3 \\
y=0.5
\end{gathered}
\] & 3 & \begin{tabular}{l}
M1 for coefficients of \(x\) or \(y\) the same followed by correct operation, condone one arithmetical error \\
M1 (dep) for substituting found value in one equation \\
A1 cao \\
SC: B1 for one correct answer only if M's not awarded
\end{tabular} \\
\hline 24 & & \(1.4 \times 10^{10}\) & 2 & \begin{tabular}{l}
B2 for \(1.4 \times 10^{10}\) or \(1.44 \times 10^{10}\) \\
(B1 for \(14.4 \times 10^{9}\) or \(14400,000,000\) or \(14000,000,000\) or \(14 \times 10^{9}\) )
\end{tabular} \\
\hline \begin{tabular}{l}
\[
25
\] \\
(a) \\
(b)
\end{tabular} & \[
\begin{aligned}
& \tan x=\frac{1.9}{3.2} \\
& x=\tan ^{-1}\left(\frac{1.9}{3.2}\right)=30.7 \\
& 90+" 30.7 "
\end{aligned}
\] & \[
30.7
\]
\[
121
\] & 3


1 & \begin{tabular}{l}
M1 for \(\tan x=\frac{1.9}{3.2}\) or \(\tan \frac{1.9}{3.2}\) \\
M1 for \(\tan ^{-1}\left(\frac{1.9}{3.2}\right)\) \\
A1 for 30.6-30.7 \\
B1 (indep) ft for \(90+\) " 30.7 " rounded to 3 or 4 s.f
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Paper 5523/04} \\
\hline No & Working & Answer & Mark & Notes \\
\hline 26 & \[
\begin{aligned}
& \mathrm{SF}=\frac{12}{9} \\
& \frac{12}{9} \times 6=8
\end{aligned}
\] & 2 & 2 & M1 for \(\frac{12}{9}\) or \(\frac{9}{12}\) or \(1.33 \ldots\) seen or 0.75 seen or 8 seen or \(\frac{6}{9}\) or \(\frac{9}{6}\) or \(0.66 \ldots\) or 1.5 or \(\frac{1}{3}\) or 3 oe seen A1 cao \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Paper 5525/05} \\
\hline No & Working & Answer & Mark & Notes \\
\hline \begin{tabular}{l}
\[
5
\] \\
(a) \\
(b)
\end{tabular} & \[
\begin{aligned}
& \frac{2}{3} \times \frac{3}{4}=\frac{6}{12} \\
& 1+2+\frac{8}{12}+\frac{9}{12}
\end{aligned}
\] & \[
\begin{array}{r}
\frac{1}{2} \\
4 \frac{5}{12}
\end{array}
\] & 2
2 & \begin{tabular}{l}
M1 for \(\frac{6}{12}\) or \(\frac{3}{6}\) or \(\frac{2 \times 3}{3 \times 4}\) \\
A1 accept 0.5 \\
M1 for attempt to convert to fractions with common denominator e.g two fractions, denominator of 12 \\
A1 correct conversion : \(\frac{8}{12}\) and \(\frac{9}{12}\), \\
or \(\frac{20}{12}\) and \(\frac{33}{12}\) seen (oe) \\
A1 cao for \(4 \frac{5}{12}\) \\
OR \\
attempts to convert to decimals: must use at least 2dp \\
M1 \(0.66+0.75\) (or \(1.66+2.75\) ) or \(0.67+0.75\) etc \\
A1 4.41, 4.417, 4.416 or \(0.41,0.417,0.416\) or \(0.42,4.42\) \\
A1 4.416 (recurring)
\end{tabular} \\
\hline \begin{tabular}{l}
\[
6 \quad \text { (a)(i) }
\] \\
(ii) \\
(b)
\end{tabular} & \(x+y=10\) and \(x-y=4\) & \[
\begin{gathered}
5^{6} \\
5^{3} \\
x=7 \\
y=3
\end{gathered}
\] & \[
\begin{aligned}
& 1 \\
& 1 \\
& 3
\end{aligned}
\] & \begin{tabular}{l}
B1 accept \(15625,5^{4+2}\) \\
B1 accept 125, \(5^{9-6}\) \\
M1 for either \(x+y=10\) or \(x-y=4\) \\
A2 for both values correct [(A1 for one value correct) If M0, award B3 for both values correct or B2 for one value correct, otherwise B0] \\
SC B2 for \(x=3\) or \(y=7\)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{Paper 5525/05} \\
\hline No & \multicolumn{2}{|c|}{Working} & Answer & Mark & Notes \\
\hline 7 & \[
\begin{aligned}
& 2 \times \frac{1}{2} \times 6 \times 8 \text { or } 48 \\
& 8 \times 9+6 \times 9+10 \times 9 \\
& \text { or } 72+54+90
\end{aligned}
\] & & \[
\begin{aligned}
& 264 \\
& \mathrm{~cm}^{2}
\end{aligned}
\] & 4 & \begin{tabular}{l}
M1 attempt to find the area of one face; \(\frac{1}{2} \times 6 \times 8\) or \((8 \times 9)\) or \((6 \times 9)\) or \((10 \times 9)\) or 72 or 54 or 90 or 24 or 48 \\
M1 all five faces with an intention to add \\
A1 cao numerical answer of 264 \\
B1 (indep) \(\mathrm{cm}^{2}\) with or without numerical answer
\end{tabular} \\
\hline 8 & \(\square \quad \underline{ }\) &  & \[
\frac{\pi a b^{3}}{3 d} 3(c+d)^{3} 3 \pi b c^{2}
\] & 3 & \begin{tabular}{l}
B3 (B1 for each one correct) \\
\(\mathrm{Nb}-\mathrm{B} 1\) for each of the \(4^{\text {th }}, 5^{\text {th }}, 6^{\text {th }}\) tick
\end{tabular} \\
\hline \begin{tabular}{l}
9 (a) \\
(b)
\end{tabular} & \[
\begin{aligned}
& x+0.3+0.2+x=1 \\
& 0.3 \times 200
\end{aligned}
\] & & \[
\begin{gathered}
\hline 0.25 \\
60
\end{gathered}
\] & \[
2
\]
\[
2
\] & \begin{tabular}{l}
M1 for \(x+0.3+0.2+x=1\) oe, or \(0.5 \div 2\) \\
A1 oe \\
M1 \(0.3 \times 200\) \\
A1 cao Accept 60 out of 200 (in words) \\
SC B1 for \(\frac{60}{200}\)
\end{tabular} \\
\hline \begin{tabular}{l}
10 (a) \\
(b)
\end{tabular} & & & \[
\begin{gathered}
(-12)-4-2 \quad(0) 8 \\
5 \text { points plotted } \\
\text { accurately } \\
\text { points joined with } \\
\text { smooth curve } \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& 3 \\
& 2
\end{aligned}
\] & \begin{tabular}{l}
B3 for all correct [(B1 for each one correct) \\
B1 \(\pm 1\) full ( 2 mm ) square ft table if at least B1 awarded (all \\
5 points plotted) \\
B1 ft for any smooth curve if previous B1 gained \\
NB: curve must pass within 1 full square of the points
\end{tabular} \\
\hline 11 & & & \[
\begin{gathered}
m=3 \\
n=5
\end{gathered}
\] & 2 & \begin{tabular}{l}
B1 for 3 \\
B1 for 5 \\
(B2 for \(2^{3} \times 5\) or \(2 \times 2 \times 2 \times 5\) ) \\
SC: award B1 only if \(m=3, n=3\), for \(8 \times 5\) seen
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Paper 5525/05} \\
\hline No & Working & Answer & Mark & Notes \\
\hline 12 & \[
\frac{5--1}{-1-2}=-2
\] & \(y=-2 x+5\) & 4 & \begin{tabular}{l}
M1 for clear attempt to find gradient eg fraction with \(-1,5\) in numerator, \(2,-1\) in denominator \\
A1 for -2 cao \\
B2 ft for \(y=\) " -2 " \(x+5 \mathrm{oe}\left(\operatorname{eg} y=\frac{-6}{3} x+5\right)\) \\
(B1 for \(y=m x+5\) or , \(-2 x+5\) or \(y="-2 " x+c\) )
\end{tabular} \\
\hline \begin{tabular}{l}
(a) \\
(b) \\
(c)
\end{tabular} & \begin{tabular}{l}
\[
\frac{3}{4} \times \frac{2}{3}+\frac{1}{4} \times \frac{1}{3}=\frac{6}{12}+\frac{1}{12}
\] \\
\(n=21 \times 4\) or \(\frac{1}{6}: \frac{1}{4}\) oe \(\frac{1}{6} \times 84\) or \(21 \times \frac{2}{3}\)
\end{tabular} & \(\frac{1}{4}\) on LH branch \(\frac{2}{3} \& \frac{1}{3} \& \frac{2}{3}\) on RH branches
\[
\frac{7}{12}
\] & 2

3
3 & \begin{tabular}{l}
B1 cao \\
B1 \\
M1 for \(\frac{3}{4} \times \frac{2}{3}\) or \(\frac{1}{4} \times \frac{1}{3}\) from their tree diagram \\
M1 for sum of two products \\
A1 for \(\frac{7}{12}\) oe \\
M1 for either \(\frac{1}{3} \times \frac{3}{4}\left(=\frac{1}{4}\right)\) or \(\frac{2}{3} \times \frac{1}{4}\left(=\frac{1}{6}\right)\) from their tree diagram \\
M1 for \(21 \times 4(=84)\) or \(\frac{21}{3} \times 2\) \\
A1 for 14 cao \\
SC: B2 for 63 seen in fraction or ratio
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Paper 5525/05} \\
\hline No & Working & Answer & Mark & Notes \\
\hline \begin{tabular}{l}
14 (a)(i) \\
(ii) \\
(b)
\end{tabular} & \(360-90-90-\) "150" or \(180-\) "150" & \[
\begin{aligned}
& 150 \\
& 30
\end{aligned}
\] & 2
3 & \begin{tabular}{l}
B1 accept 150 or 210 \\
B1 for angle at the centre is twice the angle at the circumference \\
B1 identifies angle between radius and tangent as \(90^{\circ}\) (may be in working or on diagram) \\
M1 360 - 90-90-" \(150^{\prime}\) \\
A1 ft from (a)(i) excluding a negative answer Or \\
B1 for 90 \\
M1 for \(2 \times\left(180-90-\frac{150}{2}^{\prime \prime}\right)\) \\
A1 ft from (a)(i) excluding a negative answer Or \\
B3 for 180-(a) \\
SC: 180 - " 210 " can get B1 for \(90^{\circ}\) and/or B1 for "cyclic quadrilateral"
\end{tabular} \\
\hline \begin{tabular}{l}
15 (a) \\
(b)
\end{tabular} & \[
\begin{aligned}
& \operatorname{eg} x=0.3939 \ldots \text { so } 100 x=39.3939 \ldots \\
& 99 x=39 \\
& \text { so } x=\frac{39}{99}=\frac{13}{33}
\end{aligned}
\] & 0.2727... & \[
\begin{aligned}
& 1 \\
& 3
\end{aligned}
\] & \begin{tabular}{l}
B1 for 2.27 recurring or \(0.2727 \ldots\) oe or 0.273 \\
M1 for \(100 x=39.39 \ldots\) \\
M1 dep for subtraction of both sides \\
A1 for \(\frac{13}{33}\) from correct proof \\
Alternative method \\
M1 for \(13.000 \div 33\) \\
M1 for remainders 31 and 13 \\
A1 for 0.39 recurring \\
SC:B1 for \(\frac{39}{99}\)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Paper 5525/05} \\
\hline No & Working & Answer & Mark & Notes \\
\hline \begin{tabular}{l}
16 \\
(a) \\
(b) \\
(c)
\end{tabular} & \[
\begin{aligned}
& d=k t^{2} \\
& 80=k \times 4^{2}
\end{aligned}
\]
\[
45=5 t^{2}
\] & \begin{tabular}{l}
\[
d=5 t^{2}
\] \\
245 \\
3
\end{tabular} & 3
1
1
2 & \begin{tabular}{l}
M1 for \(d=k t^{2}\) or \(d \propto t^{2}\) \\
M1 sub \(d=80\) and \(t=4\) into their equation \\
A1 for \(d=5 t^{2}\) oe (cao) \\
B1 ft from (a) using " \(k\) " \\
M1 ft from (a) for substituting \(d=45\) into their equation \\
A1 for 3 cao (condone inclusion of -3 )
\end{tabular} \\
\hline \begin{tabular}{l}
17 (a)(i) \\
(ii) \\
(b)
\end{tabular} & \[
\begin{aligned}
\text { LHS } & =\left(\frac{100-\left(x^{2}-16 x+64\right)}{4}\right) \\
& =\left(\frac{36+16 x-x^{2}}{4}\right) \\
\text { RHS } & =\left(\frac{36-2 x+18 x-x^{2}}{4}\right)=\text { LHS }
\end{aligned}
\] & \[
\begin{gathered}
(0,9) \\
(8,25)
\end{gathered}
\] & 3
3 & \begin{tabular}{l}
B1 cao \\
B1 for \(x=8\) cao \\
B1 for \(y=25\) cao \\
SC: B1 for \((25,8)\) \\
M1 for expansion of either set of brackets with at least 3 of 4 terms correct \\
M1 for common denominator of 4 or multiplying through by 4 or reducing each numerator to a single term \\
A1 for fully correct solution \\
Alternative method \\
M1 for \(\left(5-\frac{(x-8)}{2}\right)\left(5+\frac{(x-8)}{2}\right)\) \\
M1 for \(\left(\frac{2 \times 5-(x-8)}{2}\right)\left(\frac{2 \times 5+(x-8)}{2}\right)\) \\
A1 for \(\frac{(18-x)(x+2)}{4}\)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Paper 5525/05} \\
\hline No & Working & Answer & Mark & Notes \\
\hline \begin{tabular}{l}
\[
18
\] \\
(a) \\
(b)
\end{tabular} & \[
\begin{aligned}
& \frac{810 \pi}{90 \pi} \text { or } 9 \\
& \sqrt{9} \text { or } 3 \\
& 3^{3} \text { or } 27 \text { or } 2700
\end{aligned}
\] & \[
\begin{gathered}
12 \\
2700 \pi
\end{gathered}
\] & 3

2 & \begin{tabular}{l}
M1 for \(\frac{810 \pi}{90 \pi}\) or 9 or \(\frac{1}{9}\) or \(1: 9\) oe \\
M1 for \(\sqrt{\frac{810 \pi}{90 \pi}}\) or \(\sqrt{9}\) or 3 or \(\frac{1}{3}\) or \(\sqrt{9}: \sqrt{1}\) oe \\
A1 cao \\
SC:B1 for answer of 36 \\
M1 for " \(3^{3}\) " or 27 or \((\sqrt{9})^{3}:(\sqrt{81})^{3}\) oe or \(9^{3}\) or \(2700-\) \\
A1 cao
\end{tabular} \\
\hline \begin{tabular}{l}
19 (a)(i) \\
(ii) \\
(iii) \\
(b)
\end{tabular} & \begin{tabular}{l}
\(64^{-\frac{2}{3}}=\frac{1}{64^{\frac{2}{3}}}\) or \(64^{-\frac{2}{3}}=\left(4^{2}\right)^{-1}\) \\
\(\sqrt{ } 27=\sqrt{9 \times 3}\) or \(\sqrt{27}=3 \sqrt{ } 3\) or \(\sqrt{ } 27=3^{3 / 2}\)
\end{tabular} & \[
\begin{gathered}
1 \\
8 \\
\frac{1}{16} \\
\frac{5}{2} \text { oe }
\end{gathered}
\] & \begin{tabular}{l}
\[
\begin{aligned}
& 1 \\
& 1 \\
& 2
\end{aligned}
\] \\
2
\end{tabular} & \begin{tabular}{l}
B1 cao \\
B1 cao \\
M1 for knowing negative power is a reciprocal or power of \(\frac{1}{3}\) root is a cube root \\
A1 cao for \(\frac{1}{16}\) \\
M1 for \(\sqrt{27}=\sqrt{9 \times 3}\) or \(\sqrt{27}=3^{3 / 2}\) \\
A1 for \(\frac{5}{2}\) oe (cao) \\
Alternative method \\
M1 for \(9 \times 27=3^{2 n}\) \\
A1 for \(\frac{5}{2}\) oe (cao)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Paper 5525/05} \\
\hline No & Working & Answer & Mark & Notes \\
\hline \begin{tabular}{l}
20 (a)(i) \\
(ii) \\
(b)(i) \\
(ii)
\end{tabular} & & \[
\begin{gathered}
(90,1) \\
(180,0) \\
(45,0) \\
(90,-3)
\end{gathered}
\] & \[
\begin{aligned}
& 2 \\
& 2
\end{aligned}
\] & B1 cao could be indicated on diagram \\
\hline 21 & \[
\begin{aligned}
& \frac{1}{3} \pi x^{2} h=\frac{4}{3} \pi(2 x)^{3} \\
& x^{2} h=4 \times 8 x^{3}
\end{aligned}
\] & \(32 x\) & 3 & \begin{tabular}{l}
M1 for substitution in correct formulae M1 (dep.) for correct unsimplified expression eg
\[
h=\frac{\frac{4}{3} \pi(2 x)^{3}}{\frac{1}{3} \pi x^{2}} \text { oe or } h=8 x \text { oe }
\] \\
A1 for \(32 x\) cao
\end{tabular} \\
\hline \begin{tabular}{l}
(a) \\
(b)
\end{tabular} & \[
\begin{aligned}
& (\overline{O M}=) \boldsymbol{a}+2 \boldsymbol{b} \quad(\overline{O N}=) 3 \boldsymbol{a} \text { or } \frac{6}{2} \boldsymbol{a} \\
& (\overline{M N}=)-\boldsymbol{a}-2 \boldsymbol{b}+3 \boldsymbol{a} \\
& (\overline{O X}=) 2 \boldsymbol{a}+\boldsymbol{b} \quad(\overline{O Y}=) \boldsymbol{b}+4 \boldsymbol{a} \\
& (1 / 2 \overline{Q R}=) 2 \boldsymbol{a}-\boldsymbol{b} \text { or }(1 / 2 \overline{R Q}=) \boldsymbol{b}-2 \boldsymbol{a}
\end{aligned}
\] & \begin{tabular}{l}
\[
2 a-2 b
\]
\[
\overline{X Y}=2 a
\] \\
(hence parallel)
\end{tabular} & \begin{tabular}{l}
\[
2
\] \\
2
\end{tabular} & \begin{tabular}{l}
B2 \\
(B1 for either \(\overline{O M}\) or \(\overline{O N}\) or \(-\boldsymbol{a}-2 \boldsymbol{b}+3 \boldsymbol{a}\) SC: B1 for \(2 \boldsymbol{b}-2 \boldsymbol{a}\) \\
B1 for either \(\overline{O X}\) or \(\overline{O Y}\) or \((1 / 2 \overline{Q R})\) \\
B1 for \(\overline{X Y}=2 a\) or \(\overline{Y X}=-2 a\)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Paper 5525/06} \\
\hline No & Working & Answer & Mark & Notes \\
\hline \begin{tabular}{l}
(a) \\
(b)
\end{tabular} & \[
v-u=5 t
\]
\[
\begin{aligned}
& x-3=5 x-25 \\
& 22=4 x
\end{aligned}
\] & \[
\begin{gathered}
\frac{v-u}{5} \\
5 \frac{1}{2}
\end{gathered}
\] & \[
\begin{aligned}
& 2 \\
& 3
\end{aligned}
\] & \begin{tabular}{l}
M1 for isolating \(\pm 5 t\) or \(\pm t\) or for dividing through by 5 A1 oe \\
M1 for \(x-3=5(x-5)\) or \(\frac{x}{5}-\frac{3}{5}=x-5\) \\
M1 for isolating terms in \(x\) correctly from \(a x+b=c x+d\) \\
A1 cao accept \(5 \frac{1}{2}, \frac{11}{2}, 5.5\)
\end{tabular} \\
\hline \begin{tabular}{l}
\[
2
\] \\
(a) \\
(b)
\end{tabular} & \[
\begin{aligned}
& 36 \div(7+3+2) \\
& " 3 " \times 7 \\
& 51.5 \times \frac{8.5}{100}=4.3775 \\
& 51.5-4.3775=47.1225
\end{aligned}
\] & \begin{tabular}{l}
\[
21
\] \\
47 or 47.1 or 47.12
\end{tabular} & 3
4 & \begin{tabular}{l}
M1 for \(36 \div(7+3+2)\) \\
M1 (dep) for " 3 " \(\times 7\) or 3 or 2 \\
A1 cao \\
M1 for \(51.5 \times \frac{8.5}{100}\) or \(4.37(75)\) seen \\
M1 (dep) for 51.5 - "4.37(75)" \\
A1 for 47 or better \\
B1 (indep) for rounding their answer correctly to the nearest whole number or 1 or \(2 \mathrm{~d} . \mathrm{p}\) \\
OR \\
M1 for \(51.5 \times \frac{100-8.5}{100}\) \\
M1 for \(51.5 \times\) " 0.915 " or \(0.515 \times " 91.5 "\) \\
A1 for 47 or better \\
B1 (indep) for rounding their answer correct to the nearest whole number or 1 or \(2 \mathrm{~d} . \mathrm{p}\)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Paper 5525/06} \\
\hline No & Working & Answer & Mark & Notes \\
\hline 3 & \[
\begin{aligned}
& 3 \rightarrow 15 \\
& 4 \rightarrow 48 \\
& 3.1 \rightarrow 17.3(91) \\
& 3.2 \rightarrow 19.9(68) \\
& 3.3 \rightarrow 22.7(37) \\
& 3.4 \rightarrow 25.7(04) \\
& 3.5 \rightarrow 28.8(75) \\
& 3.4 \rightarrow 25.7(04) \\
& 3.3 \rightarrow 22.7(37) \\
& 3.35 \rightarrow 24.1(95375) \\
& \hline
\end{aligned}
\] & 3.3 & 4 & \begin{tabular}{l}
B2 for trial between 3.3 and 3.4 inclusive \\
(B1 for trial between 3 and 4 inclusive) \\
B1 for different trial between 3.3 and 3.4 exclusive \\
B1 (dep on at least one previous B1) for 3.3 \\
NB trials should be evaluated to at least 1 dp truncated or rounded
\end{tabular} \\
\hline \begin{tabular}{l}
\[
4
\] \\
(a)
\end{tabular} & & Angle in a semicircle & 1 & B1 oe \\
\hline (b) & \[
\begin{aligned}
& 12^{2}+16^{2}=400 \\
& \sqrt{400}=20
\end{aligned}
\] & \[
20
\] & 3 & \begin{tabular}{l}
M1 for \(12^{2}+16^{2}\) \\
M1 for \(\sqrt{144+256}\) \\
A1 cao
\end{tabular} \\
\hline (c) & & 314 & 3 & \begin{tabular}{l}
M1 for \(\pi \times\left(\frac{20^{\prime \prime}}{2}\right)^{2}\) \\
M1 (indep) for correct order of evaluation of \(\pi \times r^{2}\) for any \(r\) A1 for 314-315 inclusive
\end{tabular} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Paper 5525/06} \\
\hline No & Working & Answer & Mark & Notes \\
\hline 6 (a) & & \(a^{7}\) & 1 & B1 accept \(a^{4+3}\) \\
\hline (b) & & \[
15 x^{3} y^{4}
\] & 2 & \begin{tabular}{l}
B2 cao \\
(B1 for two of \(15, x^{3}, y^{4}\) in a product)
\end{tabular} \\
\hline (c) & & \[
x-1
\] & 1 & B1 cao \\
\hline (d) & & \((a+3 b)(a-3 b)\) & 2 & \begin{tabular}{l}
B2 for \((a+3 b)(a-3 b)\) \\
(B1 for \((a \pm 3 b)(a \pm 3 b)\)
\end{tabular} \\
\hline 7 & \[
\begin{aligned}
& 80 \%=220 \\
& 220 \div 80 \times 100
\end{aligned}
\] & 275 & 3 & M1 for recognising that \(80 \%\) is equivalent to 220 M1 for \(220 \div 80 \times 100\) oe A1 cao \\
\hline 8 & & \[
\begin{gathered}
x=3 \\
y=0.5
\end{gathered}
\] & 3 & \begin{tabular}{l}
M1 for coefficients of \(x\) or \(y\) the same followed by correct operation, condone one arithmetical error \\
M1 (dep) for substituting found value in one equation \\
A1 cao \\
SC: B1 for one correct answer only if Ms not awarded
\end{tabular} \\
\hline 9 & & \(1.4 \times 10^{10}\) & 2 & \begin{tabular}{l}
B2 for \(1.4 \times 10^{10}\) or \(1.44 \times 10^{10}\) \\
(B1 for \(14.4 \times 10^{9}\) or \(14400,000,000\) or \(14000,000,000\) or \(14 \times 10^{9}\) )
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Paper 5525/06} \\
\hline No & Working & Answer & Mark & Notes \\
\hline \begin{tabular}{l}
\[
10
\] \\
(a) \\
(b)
\end{tabular} & \[
\begin{aligned}
& \tan x=\frac{1.9}{3.2} \\
& x=\tan ^{-1}\left(\frac{1.9}{3.2}\right)=30.7 \\
& 90+" 30.7 "
\end{aligned}
\] & \[
30.7
\]
\[
121
\] & 3

1 & \begin{tabular}{l}
M1 for \(\tan x=\frac{1.9}{3.2}\) or \(\tan \frac{1.9}{3.2}\) \\
M1 for \(\tan ^{-1}\left(\frac{1.9}{3.2}\right)\) \\
A1 for 30.6-30.7 \\
B1 (indep) ft for \(90+\) " 30.7 " rounded to 3 or 4 s.f
\end{tabular} \\
\hline (b) & \[
\begin{align*}
& \mathrm{SF}=\frac{12}{9}  \tag{a}\\
& \frac{12}{9} \times 6=8 \\
& \mathrm{SF}=\frac{9}{12}, \frac{9}{12} \times 7=5.25
\end{align*}
\] & \[
2
\]
\[
5.25
\] & 2

2 & \begin{tabular}{l}
M1 for \(\frac{12}{9}\) or \(\frac{9}{12}\) or \(1.33 \ldots\) seen or 0.75 seen or 8 seen or \(\frac{6}{9}\) or \(\frac{9}{6}\) or \(0.66 \ldots\) or 1.5 or \(\frac{1}{3}\) or 3 oe seen A1 cao \\
M1 for \(\frac{B E}{7}=\frac{9}{12}\) oe \\
A1 cao
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Paper 5525/06} \\
\hline No & Working & Answer & Mark & Notes \\
\hline (b) & \[
\begin{align*}
& 84=6.7 \pi+2 \times 6.7+2 \mathrm{a}  \tag{a}\\
& 2 \mathrm{a}+13.4=62.95 \ldots \\
& \text { or } 2 \mathrm{a}+34.44=84 \\
& P=\pi r+2 r+2 a \\
& P-2 a=\pi r+2 r \\
& \\
& P-2 a=(\pi+2) r
\end{align*}
\] & \[
24.8
\]
\[
\frac{P-2 a}{\pi+2}
\] & 3
3 & \begin{tabular}{l}
M1 for substituting correctly, \(\pi\) may be left M1 for correct rearrangement as far as \(\pm 2 a\) \\
A1 for 24.7-24.8 \\
M1 subtracting \(2 a\) from each side \\
M1 for factorising to get \((\pi+2) r\) \\
A1 for \(\frac{P-2 a}{\pi+2}\) oe \\
S.C \(\frac{p-2 a}{5.14}\) oe is M1 M1 A0
\end{tabular} \\
\hline 13 & Area \(\triangle A B C=1 / 2 \times 14 \times 8 \times \sin 106(=53.8)\) & 53.8 & 3 & \begin{tabular}{l}
M1 for \(1 / 2 \times 14 \times 8 \times \sin 106\) \\
M1 (dep) for \(56 \times 0.961\) (26..) or 107.6... \\
A1 53.8-53.9 \\
SC 107.6 is B2
\end{tabular} \\
\hline \begin{tabular}{l}
14 \\
(a) \\
(b)
\end{tabular} & \(500 \times 1.045^{20}=1205.857 \ldots \ldots\). & \[
\begin{gathered}
4.5 \\
1205.86
\end{gathered}
\] & \begin{tabular}{l}
1 \\
2 \\
2
\end{tabular} & \begin{tabular}{l}
B1 cao \\
M1 for \(500 \times 1.045^{20}\) \\
A1 for 1205.85-1206 \\
(SC:B1 for 705.85-706 no working)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Paper 5525/06} \\
\hline No & Working & Answer & Mark & Notes \\
\hline 15 (a) & \[
\begin{aligned}
& 6 x^{2}+11 x-10+6 x-4=25 \\
& 6 x^{2}+17 x-39=0
\end{aligned}
\] & & 3 & \begin{tabular}{l}
M1 for an expression for the area involving either \((3 x-2)(2 x+5)+2(3 x-2)\) \\
or \(3 x(3 x-2)+(3 x-2)(7-x)\) \\
or \(3 x(2 x+5)-2(7-x)\) \\
or \((3 x-2)^{2}+2(3 x-2)+(3 x-2)(7-x)\) \\
where in each case at least one of 2 or 3 product terms must be correct \\
M1 (indep) for one correct expansion involving \(x^{2}\) \\
A1 for simplification to final answer
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Paper 5525/06} \\
\hline No & Working & Answer & Mark & Notes \\
\hline \begin{tabular}{l}
15 (b)(i) \\
(ii)
\end{tabular} & \[
\begin{aligned}
& x=\frac{-17 \pm \sqrt{17^{2}-4 \times 6 \times(-39)}}{2 \times 6} \\
& =\frac{-17 \pm \sqrt{289+936}}{12} \\
& x=+\frac{18}{12} \text { or }-4.33
\end{aligned}
\]
\[
\begin{aligned}
& x^{2}+\frac{17}{6} x-\frac{39}{6}=0 \\
& \left(x+\frac{17}{12}\right)^{2}-\left(\frac{17}{12}\right)^{2}-\frac{39}{6}=0 \\
& \left(x+\frac{17}{12}\right)^{2}=\left(\frac{17}{12}\right)^{2}+\frac{39}{6}
\end{aligned}
\] & \(1.5,-\frac{13}{3}\) & 4 & \begin{tabular}{l}
M1 for \(x=\frac{-17 \pm \sqrt{17^{2}-4 \times 6 \times(-39)}}{2 \times 6}\) up to signs in b \& c \\
M1 for \(x=\frac{-17 \pm \sqrt{1225}}{12}\) \\
A1 \(x=1.5\) or -4.33 , or better \\
OR \\
M2 for \((3 x+13)(2 x-3)\) \\
(M1 for \((3 x \pm a)(2 x \pm b)\) with \(a b= \pm 39\) \\
A1 \(x=1.5\) or -4.33 , or better \\
OR \\
M1 for \(\left(x+\frac{17}{12}\right)^{2}\) seen
\[
\operatorname{M} 1\left(x+\frac{17}{12}\right)^{2}=\left(\frac{17}{12}\right)^{2}+\frac{39}{6}
\] \\
A1 \(x=1.5\) or -4.33 , or better \\
SC:M1 for answer " 1.5 " with no working or T \& I \\
B1 cao length \(=8\)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Paper 5525/06} \\
\hline No & Working & Answer & Mark & Notes \\
\hline 16 (a) & \[
\mathrm{P}(\mathrm{win})=\frac{2}{5} \times \frac{3}{5}+\frac{2}{5} \times \frac{1}{5}\left(=\frac{8}{25}\right)
\] & \[
\frac{8}{25}
\] & 3 & \begin{tabular}{l}
M1 for \(\frac{2}{5} \times \frac{3}{5}\) or \(\frac{2}{5} \times \frac{1}{5}\) or for clearly identifying in \(\mathrm{P}(\mathrm{R})\) \(\times \mathrm{P}(\mathrm{R})+\mathrm{P}(\mathrm{B}) \times \mathrm{P}(\mathrm{B})\) \\
M 1 for \(\mathrm{P}(\) win \()=" \frac{2}{5} \times \frac{3}{5}+\frac{2}{5} \times \frac{1}{5}\) \\
A1 for \(\frac{8}{25}\), oe
\end{tabular} \\
\hline (b) & \[
\begin{aligned}
& \frac{8}{25} \times 100(=32) \\
& 100 \times 20-" 32 " \times 50
\end{aligned}
\] & £4 & 2 & \begin{tabular}{l}
M1 for \(\left(\frac{8}{25} \times 100\right) \times 50\) or \(\times 0.5\) \\
A1 cao
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Paper 5525/06} \\
\hline No & Working & Answer & Mark & Notes \\
\hline 17 & Lower bound of 1200 is 1150 Upper bound of 60 is 65 \(1150 \div 65\) & 17 & 4 & \begin{tabular}{l}
B1 for 1150 or 1250 seen \\
B1 for 65 or 55 seen \\
M1 (Lower bound of load) \(\div\) (Upper bound of weight) \\
Where \(1150 \leq\) LB load \(<1200\) and
\[
60<\text { UB Weight } \leq 65
\] \\
A1 for 17 requires fully correct working OR \\
B1 for 1150 or 1250 seen \\
B1 for 65 or 55 seen \\
M1 (upper bound of load) \(\div\) (lower bound of weight) \\
Where 1200 <UB load \(\leq 1250\) and \(55 \leq\) LB weight \(<60\) \\
A1 for 22 requires fully correct working \\
OR \\
M2 \(1200 \div 55\) \\
A1 21.8 \\
A1 21 requires fully correct working \\
OR \\
M2 \(1200 \div 65\) \\
A1 18.4(6) \\
A1 18 requires fully correct working
\end{tabular} \\
\hline \begin{tabular}{l}
(a) \\
(b)
\end{tabular} & \[
3^{4} x^{4} y^{8}
\]
\[
\frac{x(x-3)}{(x-5)(x-3)}
\] & \[
81 x^{4} y^{8}
\]
\[
\frac{x}{x-5}
\] & 2
3 & \begin{tabular}{l}
B2 for \(81 x^{4} y^{8}\) \\
(B1 for 2 of 81, \(x^{4}, y^{8}\) ) \\
B1 for \(x(x-3)\) \\
B1 for \((x-5)(x-3)\) \\
B1 cao
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Paper 5525/06} \\
\hline No & Working & Answer & Mark & Notes \\
\hline \begin{tabular}{l}
\[
19
\] \\
(a) \\
(b)
\end{tabular} & \[
\begin{aligned}
& 6^{2}-2^{2}=32 \\
& D V A=2 \times \sin ^{-1}\left(\frac{2}{6}\right) \\
& \text { OR } \\
& \begin{aligned}
\cos D V A & =\frac{6^{2}+6^{2}-16}{2 \times 6 \times 6} \\
& =\frac{56}{72} \\
D V A & =\cos ^{-1}\left(\frac{56}{72}\right)=38.94
\end{aligned}
\end{aligned}
\] & \[
\begin{aligned}
& 5.66 \\
& 38.9
\end{aligned}
\] & \[
\begin{aligned}
& 2 \\
& 3
\end{aligned}
\] & \begin{tabular}{l}
M1 for \(6^{2}-2^{2}\) (= 32) \\
A1 5.65-5.66 \\
M1 \(\sin x=\frac{2}{6}\) oe \\
M1 for \(D V A=2 \times \sin ^{-1}\left(\frac{2}{6}\right)\) \\
A1 38.9-38.95 \\
OR \\
M1 for \((\cos D V A=) \frac{6^{2}+6^{2}-4^{2}}{2 \times 6 \times 6}\) \\
M1 for \(D V A=\cos ^{-1}\left(\frac{56}{72}\right)\) \\
A1 38.9-38.95
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Paper 5525/06} \\
\hline No & Working & Answer & Mark & Notes \\
\hline 19 (c) & \begin{tabular}{l}
\[
\begin{aligned}
& A C^{2}=2^{2}+2^{2}-2 \times 2 \times 2 \times \cos 120^{\circ} \\
& A C=\sqrt{12}
\end{aligned}
\] \\
OR
\[
A N=2 \times \sin 60=\sqrt{3}
\] \\
OR
\[
\mathrm{VN}=\sqrt{" 32 "+1}=\sqrt{33}
\]
\[
\cos A V C=\frac{6^{2}+6^{2}-12}{2 \times 6 \times 6}
\]
\[
\cos A V C=\frac{60}{72}
\] \\
OR \\
\(A V C=2 \times \sin ^{-1} \frac{\sqrt{3}}{6}\), using \(A N\) \\
OR \\
\(\mathrm{AVC}=2 \times \cos ^{-1} \frac{\sqrt{33}}{6}\), using \(V N\)
\end{tabular} & 33.6 & 4 & \begin{tabular}{l}
M1 for any valid method for \(A C\) or \(A N\) or \(V N\) where \(N\) is the midpoint of \(A C\) \\
A1 for \(A C^{2}=12\) or \(A C=\sqrt{12}(=3.46 \ldots)\) or \(A N=\sqrt{3}\) \((=1.73 \ldots)\) or \(V N=\sqrt{33}(=5.74 \ldots)\) \\
M1 (indep) for correct method to find angle \(A V C\) A1 33.55-33.6
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Paper 5525/06} \\
\hline No & Working & Answer & Mark & Notes \\
\hline \begin{tabular}{l}
(a) \\
(b)
\end{tabular} & \begin{tabular}{l}
Graph translated 1 unit to the right passing through the points \((-1,0),(1,2)\) and \((2,0)\) \\
Graph stretched 2 units parallel to \(y\)-axis; passing through the points \((-2,0),(0,4)\) and \((1,0)\)
\end{tabular} & & 2

2 & \begin{tabular}{l}
M1 for translation of \(\binom{1}{0}\) or \(\binom{-1}{0}\) \\
A1 for right through the 3 points, \(\pm \frac{1}{4}\) sq \\
M1 for graph stretched parallel to the \(y\)-axis by scale factor 2 \\
A1 through all 3 points; \(\pm \frac{1}{4}\) sq not on grid at \(x=2\)
\end{tabular} \\
\hline
\end{tabular}

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publications@linneydirect.com
Order Code UG016720 Summer 2005

For more information on Edexcel qualifications, please visit www.edexcel.org.uk/qualifications Alternatively, you can contact Customer Services at www.edexcel.org.uk/ask or on 08702409800

Edexcel Limited. Registered in England and Wales no. 4496750
Registered Office: One90 High Holborn, London, WC1V 7BH```

