GCSE

Edexcel GCSE Mathematics A 1387

Summer 2005 Mark scheme Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information please call our Customer Services on 0870 240 9800, or visit our website at www.edexcel.org.uk.

Summer 2005 Publications Code UG016720 All the material in this publication is copyright © Edexcel Ltd 2005

CONTENTS

Notes on Marking Principles	1
Paper 5521/01	3
Paper 5521/02	12
Paper 5523/03	18
Paper 5523/04	27
Paper 5525/05	37
Paper 5525/06	45

NOTES ON MARKING PRINCIPLES

1 Types of mark

- M marks: method marks
- A marks: accuracy marks
- B marks: unconditional accuracy marks (independent of M marks)

2 Abbreviations

cao - correct answer only
ft - follow through
isw - ignore subsequent working
SC: special case
oe - or equivalent (and appropriate)
dep - dependent
indep - independent

3 No working

If no working is shown then correct answers normally score full marks If no working is shown then incorrect (even though nearly correct) answers score no marks.

4 With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.

If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks. Send the response to review, and discuss each of these situations with your Team Leader.

Any case of suspected misread loses A (and B) marks on that part, but can gain the M marks. Discuss each of these situations with your Team Leader. If working is crossed out and still legible, then it should be given any appropriate marks, as long as it has not been replaced by alternative work. If there is a choice of methods shown, then no marks should be awarded, unless the answer on the answer line makes clear the method that has been used.

If there is no answer on the answer line then check the working for an obvious answer.

5 Follow through marks

Follow through marks which involve a single stage calculation can be awarded without working since you can check the answer yourself, but if ambiguous do not award.

Follow through marks which involve more than one stage of calculation can only be awarded on sight of the relevant working, even if it appears obvious that there is only one way you could get the answer given.

6 Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. incorrect cancelling of a fraction that would otherwise be correct It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.

Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

7 Probability

Probability answers must be given a fractions, percentages or decimals. If a candidate gives a decimal equivalent to a probability, this should be written to at least 2 decimal places (unless tenths).

Incorrect notation should lose the accuracy marks, but be awarded any implied method marks.

If a probability answer is given on the answer line using both incorrect and correct notation, award the marks.

If a probability fraction is given then cancelled incorrectly, ignore the incorrectly cancelled answer.

8 Linear equations

Full marks can be gained if the solution alone is given on the answer line, or otherwise unambiguously indicated in working (without contradiction elsewhere). Where the correct solution only is shown substituted, but not identified as the solution, the accuracy mark is lost but any method marks can be awarded.

9 Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded in another.

Pape	Paper 5521/01						
	No	Working	Answer	Mark	Notes		
1	(a)		17252	1	B1 cao		
	(b)		5400	1	B1 cao		
	(c)		thousands, 1000, 4000	1	B1		
2	(a)		grams, g	3	B1 oe spelling		
			centimetres, cm		B1 oe spelling		
			millilitres, m <i>l</i> , cm ³		B1 oe spelling		
	(b)		5	1	B1 cao		
3	(a)		106, 102	1	B1 cao ignore extras		
	(b)		eg take away 4	1	B1 could be indicated on the diagram		
	(c)		46	1	B1 cao		

Paper 5521/01	Paper 5521/01						
No	Working	Answer	Mark	Notes			
4	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12298	3	M2 for complete correct method (condone one computational error) (M1 for complete correct method with two computational errors) A1 cao OR B2 inside of grid completed (condone missing zeros and one error) (B1 2 or 3 errors) B1 cao			
5 (a) (b)(i) (ii) (c) (d)(i) (ii) (iii)		18, 69 18 or 36 16 or 36 factor 18 11 or 88 69	1 1 1 3	B1 B1 B1 B1 cao B1 B1 cao			

Paper 5521/01	Paper 5521/01						
No	Working	Answer	Mark	Notes			
6 (a) (b) (c) (d) (e)(i) (ii)		April & May Daffodil Feb Crocus $\frac{1}{5}$ × from 56 mm to 64 mm from 0	1 1 1 2	B1 for both B1 B1 B1 B1 B1 for $\frac{1}{5}$ oe B1 A single mark on the line, between 56 mm and 64 mm measured from end 0			
7 (a)	$\frac{40}{100}$	$\frac{2}{5}$	2	B2 for $\frac{2}{5}$ B1 for $\frac{40}{100}$ or $\frac{4}{10}$ or $\frac{20}{50}$ or $\frac{8}{20}$			
(b) (c) (d) (e)		$0.98 \\ 7\ 500\ 000 \\ 25 \\ 60$	1 1 1 1	B1 cao B1 cao B1 cao B1 cao			

Pape	er 5521/01				
	No	Working	Answer	Mark	Notes
8	(a)(i) (ii) (b)		(0, 2) (4, 1) $(2, 1\frac{1}{2})$ marked	2 1	B1 cao B1 cao B1 Allow 2mm tolerance from $(2, 1\frac{1}{2})$
9	(a) (b)	1.60 + 0.40	2.40 2.00	1 2	B1 cao could be indicated on the diagram M1 for appropriate sum or product in £ or p or 200 seen eg $1.60 + 0.40$, $160 + 40$, $0.80 + 0.80 + 0.40$, $80 + 80 + 40$, 0.08×25 , 0.80×2.5 , 200 A1 cao
	(c)	$1 \div 0.8 \text{ or } 2.50 \div 2$	1.25	2	M1 for $1.00 \div 0.8$ or $2.50 \div 2$ or 125 or appropriate combination eg $1 + \frac{1}{2} \times 0.50$ A1 cao
10	(a)		hexagon	1	B1 Condone spelling error
	(b)		Sum of angles at a point is 360°	2	B1 for 360 seen B1 for "point", "complete turn" or "a circle" or similar unless accompanied by an incorrect angle SC If neither B1 scored, award B1 for a clear indication that the size of an angle, other than x , is 90° or a right angle (may be on diagram)
	(c)	$30 \times 4 + 8 \times 2$	136	2	M1 $30 \times 4 + 8 \times 2$ or attempt to sum 5 or 6 lengths A1 cao

Pape	er 5521/01				
	No	Working	Answer	Mark	Notes
11	(a)		13, 67, 76, 103, 130	5	B1 cao
	(b)		-7, -3, -1, 0, 5		B1 cao
	(c)		0.07, 0.072,0.7, 0.702,		B1 cao
	(d)		0.72 0.6, $\frac{2}{3}$, 70%, $\frac{3}{4}$		B2 (B1 for any 3 in correct order)
12	(a)		16 30	1	B1 Accept 4 30 pm Do not accept 4 30
	(b)(i)	33.56÷4 oe	8.39	3	M1 for $33.56 \div 4$ oe eg $3356 \div 4$, division by 2 twice
					A1 cao
	(ii)		9		B1 ft from "8.39" unless whole number of pounds
13	(a)		6 cm ²	3	B2 for 6 cao for numerical answer (B1 for $5.5 < \text{Area} \le 7$) then B1 (indep) for cm ² with or without numerical answer
	(b)	See diagram	Correct shape	2	B2 (B1 for any 2 sides correct or a correct enlargement scale factor $\neq 1$ or 2)

Pape	Paper 5521/01						
	No	Working	Answer	Mark	Notes		
14	(a)	$(4+3) \times 10$	70	2	M1 for $(4+3) \times 10$ A1 cao		
	(b)	120÷10-3	9	2	M1 for $\frac{120}{10}$ or 12 seen eg $12 \times 10 = 120$ A1 cao		
	(c)		C = 10(n+3)	3	B3 for $C=10(n+3)$ oe such as $C = (n+3) \times 10$ (B2 for correct RHS or $C = n+3 \times 10$, $C = 10n+3$ oe B1 for $C =$ some other linear expression in <i>n</i> or for $n+3 \times 10$, 10n+3 etc) Note: $C = n$ scores no marks		
15			11 13	2	B2 all correct		
			16 8		(B1 for 2 correct)		
			21				

Pape	Paper 5521/01						
	No	Working	Answer	Mark	Notes		
16	(a)		2p+4q	2	B2 for $2p + 4q$ (accept $2 \times p$ etc) (B1 for $2p$ or $4q$)		
	(b)		$2y^2$	1	B1 accept $2 \times y^2$ oe inc $2 \times y \times y$		
	(c)		3c + 4d	2	B2 for $3c + 4d$ (accept $3 \times c$ etc) (B1 for $3c$ or $4d$)		
	(d)		8 <i>pq</i>	1	B1 accept in any order but must not include \times sign		
17	(a)(i)		60	2	B1 cao		
	(ii)		eg top triangle is equilateral		B1 for reason		
	(b)		150	2	M1 for $\frac{180-"60"}{2} + 90$ A1 ft from (a)(i) if $x < 90$		
					SC B1 for "60" + 90 if $x < 90$		
18			40	2	M1 for 60×2 or 120 or $60 \div 3$ or 20 or $\frac{120}{180}$ A1 cao		
19			correct drawing	2	B2 Condone hidden detail shown with solid lines and missing lines on front face (B1 for a correct sketch with other incorrect sketch(es) or for prism with correct cross section >1 cube wide or for attempt to draw prism with correct cross section or prism with correct plan and side elevation)		

Pape	er 5521/01				
	No	Working	Answer	Mark	Notes
20		$\frac{600}{3 \times 10}$ or $\frac{640}{3.2 \times 10}$	$20-21\frac{1}{3}$	2	M1 for rounding at least two of the numbers to 1 sf or for sight of 640, 3.2 or 640, 32 or 600, 32 or 30 seen A1 for $20-21\frac{1}{3}$ Note: 20.3125 scores M0 A0
21	(a)		Points plotted	1	B1 \pm 1 full (2 mm) square
	(b)		positive	1	B1 cao
	(c)		Line of best fit	1	B1 Must pass through (42.5, 1.45), (42.5, 1.55) AND (67.5, 1.75), (67.5, 1.85)
	(d)		~ 1.65	1	B1 ft from single line segment with positive gradient ± 1 full (2 mm) square
22	(a)	eg $50 \times \frac{2000}{500}$	200	2	M1 for $\frac{2000}{500}$ or 4 seen A1 cao
	(b)	eg $400 \times \frac{750}{500}$	600	2	M1 for $\frac{750}{500}$ or 1.5 seen or 400 + 200 A1 cao

Paper 5521/0	Paper 5521/01					
No	Working	Answer	Mark	Notes		
23 (a)	$4 \times 3 - 2 \times 1$ $12 - 2$	10	3	M1 for 3×4 (=12) or 1×2 or attempt to divide diagram up into rectangles M1 "12"- "2" or sum of areas of rectangles A1 cao		
(b)(i)	$\frac{10}{100} \times 680 \text{ or } 680 \div 10$ 680 + 68	748	5	M1 $\frac{10}{100} \times 680$ or $680 \div 10$ or 68 seen M1 (dep) $680 + "68"$ or M2 for 680×1.10 A1 cao		
(ii)	"748"÷50 or 14.96	15		M1 For "748"÷50 or 14.96 Accept "748" rounded up or down to next 50 followed by $\div 50$ A1 ft from (b)(i) rounded up SC B1 for 680 (seen) leading to 14		

Pap	er 5521/02	2			
	No	Working	Answer	Mark	Notes
1	(a)	PlainIII/ III 8ChickenIII3BovrilIII/ 5S & VinIIII4		3	M1 for attempt to tally A1 for 1 frequency correct or all tallies correct A1 for all frequencies correct (accept for /20)
	(b) (c)		4 Plain or 8	1	B1 ft B1 ft
2	(a)(i) (ii) (b)	See diagram	11 16 Correct lines	2 2	B1 cao B1 cao B2 cao for both lines correct (B1 for one line correct)
	(c)		12	2	B2 cao (B1 for 11 or 13)
3	(a) (b) (c) (d)		580 7.2 Arrow at 48 Arrow at 6.7	1 1 1 1	B1 for 580 (\pm 2) could be written on line B1 for 7.2 \pm 0.02 could be written on line B1 allow \pm half graduation B1 allow \pm half graduation
4	(i) (ii)		Cylinder Cuboid	2	B1 ignore spelling B1 ignore spelling
5	(a)	$\pounds 10 - (\pounds 2.15 + \pounds 2.30)$	5.55	4	M1 £2.15 + £2.30 A1 for 4.45 M1 £10 - "4.45" A1 cao
	(b)	$\pounds 60 \div \pounds 2.80 = 21.42857$	21	2	M1 for $\pounds 60 \div 2.80$ or sight of digits 214 A1 for 21
	(c)	120×25÷100	30	2	M1 ¼ of £120 (oe) A1 cao SC B2 for £90

Pape	Paper 5521/02						
	No	Working	Answer	Mark	Notes		
6	(a)(i)		1430	2	B1 for 143 (±2 ⁰)		
	(ii)		Obtuse		B1 for obtuse (ignore spelling)		
	(b)	See diagram	Accurate	1	B1 for accurate drawing $\pm 2mm$		
			drawing				
7	(a)(i)		5	2	B1 cao		
	(ii)		23		B1 cao		
	(b)	$\times 2 - 1$		1	B1 for explaining a suitable method		
	(c)	See their diagram		1	B1 for a correct diagram		
	(d)		14, 17	2	B2 cao for both (B1 for one only ft from their 14)		
8	(a)		90	1	B1 accept –90		
	(b)		540	1	B1 accept -540		
	(c)		Jupiter	1	B1 accept -150		
	(d)		- 230	1	B1 cao		

Pap	er 5521/02				
	No	Working	Answer	Mark	Notes
9	(a)	2658 - 2430 = 228 "228" × 32	72.96	4	M1 2658 – 2430 A1 228 M1 "228" × 32 or "228" × 0.32 or digits 7296 seen A1 cao Or M1 for 2430 × 32 (or digits 77760 seen) or 2658 × 32 (or digits 85056 seen) A1 if 1 correct M1 for "85056" – "77760" or 7296 seen A1 cao
	(b)	$\frac{2}{5} \times 145 = 58$ 145 - "58"	87	3	M1 $\frac{2}{5} \times 145$ (or M1 $\frac{3}{5}$ seen) A1 58 (or M1 $\frac{3}{5} \times 145$) A1 for 87 ft
	(c)(i) (ii)		80 125	2	B1 for 80 (± 1) B1 125 (± 3)

Pape	er 5521/0	2			
No		Working	Answer	Mark	Notes
10	(a) (b)	Height of man \times "2.5"	1.5 - 2.0 $3 - 6$	1 3	B1 for height between 1.5m – 2.0m inclusive B3 for height between 3m – 6m inclusive (B2 for multiplying (a) by a number between 2 and 3 inclusive) (B1 for multiplying (a) by a number)
11		61 - 19 = 42 $42 \div 3 = 14$	14	2	M1 for -19 or 42 seen A1 cao
12	(a) (b)	4+5+5+5+4+3+2+1+4+5 = 38 mean = $38 \div 10 = 3.8$	5 3.8	1 2	B1 M1 for attempt to add and ÷ 10 or 3.7 or 3.9 seen A1 for 3.8 SC B1 for 33.5 seen
13	(a) (b)		3x x - 9	1 1	B1 cao Accept $3 \times x$, $x3$, $x \times 3$, $x + x + x$ B1 for $x - 9$ cao
14	(a) (b)	14.44 - 8.660254038	5.77974()	2	M1 for 14.44 seen or 8.66() or 5.7 or 5.8 or better rounded or truncated A1 cao
15	(0)	15÷24	62.5	2	B1 ft M1 for 15 ÷ 24 or 1500 ÷ 24 or sight of digits 625
16		2.10 × 450	945	2	A1 cao M1 for digits 210 × 450 or sight of digits 945 A1 cao
17		See diagram	2(y+y) $2y+2y$	2	B1 for $2(y + y)$ B1 for $2y + 2y$ (Deduct B1 for each additional tick (>2) to min 0)
18		360° ÷ 18 (=20) Sector angles: G= 60; S= 80; B=220; Correct sectors labelled correctly Use angle measurer	Angles drawn, labelled	4	 B4 for fully correct and labelled pie chart (B3 for all angles correct or for a labelled pie chart with 2 correct angles) (B2 for labelled pie chart with 1 correct angle drawn) (B1 for 360° ÷ 18 or 20 seen or implied)

Pape	Paper 5521/02							
No		Working	Answer	Mark	Notes			
19	(a)		Correct plane	2	B2 for a correct plane defined by showing at least 2 lines. (B1 for a line of symmetry on one face)			
	(b)		Correct net	2	B2 cao (B1 for 2 equilateral triangles joined appropriately to at least one rectangle or for 1 equilateral triangle joined appropriately to one of 3 rectangles)			
	(c)		Correct drawing	2	B1 for two extra sides of length 6cm (± 2mm) B1 for construction arcs 6cm from each of the ends of the given line.			
20	(a)		15	1	B1 for 15 (± 1)			
	(b)		15	1	B1 for 15 (± 0.4)			
	(c)			2	B1 horiz. line from (2, 20) to (3, 20) B1 line from (3, 20) to (5,0) or horizontal translation of it SC B1 for any journey ending at (5,0)			
21	(a)	x+4+x+x+4+x	4 <i>x</i> +8	2	M1 for attempting to add x , $x + 4$, x , $x + 4$ may be implied by 4x + a ($a > 0$) A1 for $4x + 8$ or $4(x + 2)$			
	(b)	4x + 8 = 544x = 46x = 11.5Length = "11.5" + 4	15.5	3	M1 for " $4x + 8$ " = 54 A1 cao for 11.5 seen B1 ft for "11.5" + 4			
22		$\begin{array}{c} 0.4 + 0.15 \\ 1 - ``0.55" \end{array}$	0.45	2	M1 for 1 – sum A1 for 0.45 o.e. SC B1 for 0.81			
23	(a) (b)	$\pi \times 2.45$	3:1 7.7	1 2	B1 cao M1 for $\pi \times 2.45$ (accept π as 3.1 or better) A1 for 7.59 to 7.70			

Paper 552	21/02			
No	Working	Answer	Mark	Notes
24	7×10000	70 000	2	M1 for 7 × 10 000 or 7 × 100 × 100 A1 cao
25	$5.40 \div 3 \times 7$	12.60	3	M1 for $5.40 \div 3$ or sight of 1.8 M1 dep for "1.80" \times 7 A1 for 12.6 or equivalent
26	$7.60 \ge \frac{17.5}{100} = 1.33$	£14 734.50	4	M1 for 7.60 x $\frac{17.5}{100}$ or 1.33 seen or 7.60 x 1.175 (oe)
	7.60 + 1.33 = 8.93 1650 x "8.93"			(Award M1 for 10%, 5% and 2½% correctly calculated) A1 for 8.93 or 893 M1 for 1650 x "8.93" or digits 147345 seen A1 cao Accept 14734.5
				Alternative
				M1 for $1650 \times 7.6(0)$ or 12540 seen M1 for "12540" $\times \frac{17.5}{100}$ or 2194.5 seen or "12540" $\times 1.175$
				(oe) (Award M1 for 10%, 5% and 2½% correctly calculated) M1 for "12540" + "2194.5" (dep on both previous method marks) or digits 147345 seen A1 cao accept 14 734.5

Pap	er 5523/03	;			
	No	Working	Answer	Mark	Notes
1			Correct shape	2	B2 B1 for any 2 sides correct, or a correct enlargement scale factor $\neq 1$ or 2.
2	(a)		11 13 16 8	2	B2 all correct (B1 for 2 correct) sign
	(b)		$\begin{array}{c} 21\\ \frac{31}{80} \end{array}$	1	B1 oe
3	(a) (b)		$2p+3q$ $2y^2$	2 1	B2 for $2p+3q$ (accept $2 \times p$ etc) (B1 for $2p$ or $3q$ or $2p3q$) B1 accept $2 \times y^2$ or $2 \times y \times y$
	(c) (d)		3c+4d 8pq	2 1	B2 for $3c+4d$ (accept $3 \times c$ etc) (B1 for $3c$ or $4d$ or $3c4d$) B1 accept in any order but must not include \times
4	(a)(i) (ii)		60 eg top triangle is equilateral	2	B1 cao B1 for reason
	(b)		150	2	M1 $\frac{(180-"60")}{2} + 90$ A1 ft from (a)(i) if $x < 90^{\circ}$ SC:B1 for answer from "60" + 90 if $x < 90^{\circ}$

Pap	Paper 5523/03							
	No	Working	Answer	Mark	Notes			
5	(a)	4×3-2×1 12-2	10	3	M1 for 3×4 (=12) or 1×2 or attempt to divide diagram up into rectangles M1 "12" – "2" A1 cao			
	(b)(i)	$\frac{10}{100} \times 680 \text{ or } 680 \div 10$ 680 + 68	748	5	M1 $\frac{10}{100} \times 680 \text{ or } 680 \div 10 \text{ or } 68 \text{ seen}$ M1 (dep) $680 + 680 \times 68$			
	(ii)	"748" ÷ 50 or 14.96	15		M1 for "748" ÷ 50 or 14.96; accept "748" rounded up or down to next 50 followed by ÷50 A1 ft from (b)(i) rounded up SC B1 for 680 (seen) leading to 14			
6	(a)	$2 \times 5 + 5 \times -3 = 10 - 15 =$	-5	2	M1 substitute e.g 2×5 and 5×-3 or 10 and -15 A1 cao			
	(b)	$5 \times 4^2 - 7$ $5 \times 16 - 7$	73	3	M1 substitution e.g 5×4^2 -7; do not accept 54^2 -7 M1 $5 \times 16 - 7$ or $5 \times 4 \times 4$ -7 or $80 - 7$ (NB 4^2 as 4×4) A1 cao			

Paper 5523/03	3			
No	Working	Answer	Mark	Notes
7	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	190.12	3	M1 for an attempt to multiply the units and tens, or correct partitioning M1 complete correct method (condone one arithmetic error) A1 for 190.12 cao OR M1 for putting the numbers in a grid M1 for multiplying out and addition (condone one error) A1 answer shown with point OR M1 for correct partitioning M1 679 × 20 and 679 × 8 calculated oe (condone one error) A1 cao
8 (a)		Points plotted	1	B1 \pm 1 full (2mm) square
(b)		positive	1	B1 cao
(c)		Line of best fit	1	B1 must pass through (42.5, 1.45), (42.5, 1.55) AND (67.5, 1.75), (67.5, 1.85)
(d)		approx 1.65	1	B1 ft from single line segment with positive gradient \pm 1 full (2mm) square

Pape	Paper 5523/03							
	No	Working	Answer	Mark	Notes			
9	(a)	eg $50 \times \frac{2000}{500}$	200	2	M1 2000÷500 or 4 seen A1 cao			
	(b)	eg $400 \times \frac{750}{500}$	600	2	M1 750÷500 or 1.5 seen or 400 + 200 A1 cao			
10			C = 10(n+3)	3	B3 for $C = 10(n + 3)$ oe such as $C = (n + 3) \times 10$ (B2 for correct RHS or $C = n + 3 \times 10$, $C = 10n + 3$ etc B1 for C = some other linear expression in <i>n</i> or $n + 3 \times 10$, 10n + 3 etc) NB: C= <i>n</i> scores no marks			
11	(a)		<i>p</i> (<i>p</i> +6)	2	B2 for $p(p+6)$ or $p \times (p+6)$ (B1 for $p(ap+b)$ where a,b are numbers or $p+6$ seen on it's own, or part of an expression)			
	(b)	$x^2 - 4x + 7x - 28$	$x^2 + 3x - 28$	2	M1 for 4 terms correct ignoring signs (e.g x^2 ,4 x ,7 x ,28) or 3 terms with correct signs (e.g x^2 ,-4 x ,7 x ,-28) A1 cao			
12			correct drawing	2	 B2. Condone hidden detail shown with solid lines, or missing lines on front face. (B1 for : one sketch correct with other sketches incorrect cross-section correct with depth > 1 cube, correct plan and side elevation) 			

Pape	Paper 5523/03						
	No	Working	Answer	Mark	Notes		
13		$\frac{600}{3 \times 10}$ or $\frac{640}{3.2 \times 10}$	20 to 21 $\frac{1}{3}$	2	M1 For rounding at least two of the numbers to 1 sf, or for sight of 640, 3.2 or 640, 32 or 600, 32 or 30 seen A1 for 20 to 21 $\frac{1}{3}$ NB: 20.3125 scores M0 A0		
14	(a)		correct reflection	2	B2 (B1 reflection in line other than $x=3$)		
	(b)		reflection in $y = x$	2	B2 cao Accept the word "reflected" (B1 any statement including the word "reflection")		
15	(a)(i)		56	1	B1 accept 15125, 5 ⁴⁺²		
	(ii)		5^3	1	B1 accept 125, 5 ⁹⁻⁶		
	(b)	x + y = 10 and $x - y = 4$	$\begin{array}{l} x = 7 \\ y = 3 \end{array}$	3	M1 for either $x + y = 10$ or $x - y = 4$ A2 for both values correct [(A1 for one value correct) If M0, award B3 for both values correct or B2 for one value correct, otherwise B0] SC B2 for $x = 3$ and $y = 7$		

Paper 5	aper 5523/03							
No		Working	Answer	Mark	Notes			
16 (;	a) $5-3x = 2x + 2$ $5-2 = 2x + 3x$		$\frac{3}{5}$	3	B1 for $2x + 2$ seen OR $2.5 - 1.5x = x + 1$ M1 for correct rearrangement of 4 terms A1 for $\frac{3}{5}$ oe			
(b)		-3,-2,-1,0,1,2	2	B2 (B1 for 5 correct and not more than one incorrect integers)			
17			question + response boxes oe	2	 1st aspect: One question with time period (eg each night); ignore other questions. 2nd aspect: Response list (at least two), not overlapping.* 3rd aspect: Some mention of units (eg hours) in either question or responses Award B2 for all three aspects, or B1 for just two aspects. * 0-1, 2-3, 4-5 is OK, but 0-1, 1-2, 2-3 is not OK. 			

Paper 5523/0	3			
No	Working	Answer	Mark	Notes
18 (a)	$\frac{2}{3} \times \frac{3}{4} = \frac{6}{12}$	$\frac{1}{2}$	2	M1 for $\frac{6}{12}$ or $\frac{3}{6}$ or $\frac{2 \times 3}{3 \times 4}$ A1 accept 0.5
(b)	$1+2+\frac{8}{12}+\frac{9}{12}$	$4\frac{5}{12}$	3	M1 accept 0.5 M1 for attempt to convert to fractions with common denominator e.g two fractions, denominator of 12 A1 correct conversion : $\frac{8}{12}$ and $\frac{9}{12}$, or $\frac{20}{12}$ and $\frac{33}{12}$ seen (oe) A1 cao for $4\frac{5}{12}$ OR attempts to convert to decimals: must use at least 2dp M1 0.66+0.75 (or 1.66+2.75) or 0.67+0.75 etc A1 4.41, 4.417, 4.416
19	$2 \times \frac{1}{2} \times 6 \times 8$ or 48		4	A1 4.416 (<i>recurring</i>) M1 attempt to find the area of one face;
	$8 \times 9 + 6 \times 9 + 10 \times 9$ or 72 +54 + 90	264 cm ²		$\frac{1}{2} \times 6 \times 8 \text{ or } (8 \times 9) \text{ or } (6 \times 9) \text{ or } (10 \times 9) \text{ or } 72 \text{ or } 54 \text{ or } 90 \text{ or } 24$ M1 all five faces with an intention to add A1 cao numerical answer of 264 B1 (indep) cm ² with or without numerical answer

Pape	Paper 5523/03							
	No	Working	Answer	Mark	Notes			
20			$\frac{\pi a b^3}{3d} 3(c+d)^3 3\pi b c^2$	3	B3 (B1 for each one correct) Nb –B1 for each of the 4 th ,5 th ,6 th tick			
21	(a) (b)	x + 0.3 + 0.2 + x = 1 0.3 × 200	0.25 60	2 2	M1 for $x + 0.3 + 0.2 + x = 1$ oe, or $0.5 \div 2$ A1 oe M1 0.3×200 A1 cao Accept 60 out of 200 (in words) 60			
22	(a) (b)		(-12)-4 -2 (0)8 points plotted accurately points joined with smooth curve	32	SC B1 for $\frac{60}{200}$ B3 for all correct [(B1 for each one correct)B1 ± 1 full (2mm) square ft table if at least B1 awarded (all 5 points plotted)B1 ft for any smooth curve if previous B1 gainedNB: curve must pass within 1 full square of the points			
23			$\frac{1}{4} \text{ on LH branch}$ $\frac{2}{3} \& \frac{1}{3} \& \frac{2}{3} \text{ on RH}$ branches	2	B1 B1			
24			m=3 n=5	2	B1 for 3 B1 for 5 (B2 for $2^3 \times 5$ or $2 \times 2 \times 2 \times 5$) SC: award B1 only if $m=5$, $n=3$ or for 8×5 seen			

Paper	Paper 5523/03					
I	No	Working	Answer	Mark	Notes	
25		$\frac{51}{-1 - 2} = -2$	y = -2x + 5	4	M1 for clear attempt to find gradient eg fraction with -1,5 in numerator, 2,-1 in denominator A1 for -2 B2 ft for $y = "-2"x + 5$ oe (eg $y = \frac{-6}{3}x + 5$) (B1 for $y = mx + 5$ or , $-2x+5$ or $y = "-2"x + c$)	
26	(a)(i) (ii)		150	2	B1 accept 150 or 210 B1 for angle at the centre is twice the angle at the circumference	
	(b)	360 – 90 – 90–"150"	30	3	B1 identifies angle between radius and tangent as 90° (may be in working or on diagram) M1 360° -90-90-''150' A1 ft from (a)(i) excluding a negative answer OR B1 for 90	
					M1 for $2 \times (180 - 90 - "\frac{150}{2}")$ A1 ft from (a)(i) excluding a negative answer OR B3 for $180 - (a)$	

Paper	Paper 5523/04						
N	No	Working	Answer	Mark	Notes		
1	(a)	14.44 - 8.660254038	5.77974()	2	M1 for 14.44 seen or 8.66() seen or 5.7 or 5.8 or better, rounded or truncated A1 cao		
	(b)		6	1	B1 ft		
2		15 ÷ 24	62.5	2	M1 for 15 ÷ 24 or 1500 ÷ 24 or sight of digits 625 A1 cao		
3	(a)	2.10×450	945	2	M1 for digits 210×450 or sight of digits 945 A1 cao		
	(b)	63÷2.10	30	2	M1 for 63 ÷ digits 210 A1 cao		
4		See diagram	2(y+y) $2y+2y$	2	B1 for $2(y + y)$ B1 for $2y + 2y$ (Deduct B1 for each additional tick (>2) to min 0)		
5		360° ÷ 18 (=20) Sector angles: G= 60; S= 80; B=220; Correct sectors labelled correctly Use angle measurer	Angles drawn, labelled	4	 B4 for fully correct and labelled pie chart (B3 for all angles correct or for a labelled pie chart with two angles correct) (B2 for labelled pie chart with one correct angle drawn) (B1 for 360÷18 or 20 seen or implied) 		
6	(a)		Correct plane	2	B2 for a correct plane defined by showing at least 2 lines. (B1 for a line of symmetry on one face)		
	(b)		Correct net	2	B2 cao (B1 for 2 equilateral triangles joined appropriately to at least one rectangle or for 1 equilateral triangle joined appropriately to one of the three rectangles)		
	(c)		Correct drawing	2	B1 for two extra sides of length 6 cm (± 2mm) B1 for construction arcs 6cm from each of the ends of the given line		
7		61 - 19 = 42 $42 \div 3 = 14$	14	2	M1 for -19 or 42 seen or $3x + 19$ A1 cao		

Pap	Paper 5523/04					
	No	Working	Answer	Mark	Notes	
8	(a) (b) (c)		15 15	1 1 2	B1 cao for $15(\pm 1)$ B1 cao for $15(\pm 0.4)$ B1 horiz. line from (2,20) to (3,20) B1 line from (3,20) to (5,0) or horiz. translation of it SC: B1 for any journey ending at (5,0)	
9	(a)	x+4+x+x+4+x	4 <i>x</i> +8	2	M1 for attempting to add $x + 4, x, x + 4, x$ may be implied by $4x+a, a>0$ A1 for $4x+8$ or $4(x + 2)$	
	(b)	4 x + 8 = 54 4 x = 46 x = 11.5 Length = "11.5" + 4	15.5	3	M1 for " $4x + 8$ " = 54 A1 cao for 11.5 seen B1 ft for "11.5"+ 4	
10		$\begin{array}{c} 0.4 + 0.15 \\ 1 - 0.55 \end{array}$	0.45	2	M1 for 1 – sum A1 for 0.45 oe SC: B1 for 0.81	
11	(a) (b)	$\pi \times 2.45$	3:1 7.7	1 2	B1 cao M1 for $\pi \times 2.45$ (accept π as 3.1 or better) A1 for 7.59 to 7.70	
12		7×10000	70000	2	M1 for 7×10000 or $7 \times 100 \times 100$ A1 cao	
13		5.40 ÷ 3 × 7	12.60	3	M1 for $5.40 \div 3$ or sight of 1.8 M1 (dep) for "1.80" × 7 A1 for 12.6 or equivalent	

Paper 5523/04	Paper 5523/04					
No	Working	Answer	Mark	Notes		
14	$7.60 \times \frac{17.5}{100} = 1.33$	£14734.50	4	M1 for $7.60 \times \frac{17.5}{100}$ or 1.33 seen or 7.60 ×1.175 (oe)		
	7.60 + 1.33 = 8.93 1650 × "8.93"			(Award M1 for 10%, 5% and 2½% correctly calculated) A1 for 8.93 or 893 M1 for 1650 × "8.93" or digits 147345 seen A1 cao Accept 14734.5 OR M1 for 1650×7.6 or 12540 seen M1 for "12540"× $\frac{17.5}{100}$ or 2194.5 seen or "12540'×1.175 (oe) (Award M1 for 10%, 5%, and 2½% correctly calculated) M1 for "12540" + "2194.5" (dep on both previous M marks) or digits 147345 seen A1 cao accept 14734.5		

Paper 5523/0	Paper 5523/04					
No	Working	Answer	Mark	Notes		
15	285 × 1000/(60 × 60) = 79.1Ġ		3	M2 for 285 × 1000 \div 60 \div 60 or 80 × 60 × 60 \div 1000 or for a correct method to obtain two comparable values e.g 80 × 60 × 60 and 285 × 1000 (M1 for 285 \div 60 \div 60 or 0.079() seen or 80 × 60 × 60 or 288000 seen or for 285 × 1000 or 285000 seen or 80 \div 1000 or 0.08 seen) A1 for 288 or 79.() or for two correctly calculated comparable values e.g 288000 and 285000		
16 (a)	4x + 12 = 6 $4x = -6$	-1.5	3	B1 for $4x + 12$ or $x + 3 = \frac{6}{4}$ M1 for a correct re-arrangement of their 3 terms to isolate $4x$ or x A1 for -1.5 oe		
(b)	v - u = 5t	$\frac{v-u}{5}$	2	M1 for isolating $\pm 5t$ or $\pm t$ or for dividing through by 5 A1 oe		

Paper 5523/0	Paper 5523/04					
No	Working	Answer	Mark	Notes		
17	$\begin{array}{c} 3 \rightarrow 15 \\ 4 \rightarrow 48 \\ 3.1 \rightarrow 17.3(91) \\ 3.2 \rightarrow 19.9(68) \\ 3.3 \rightarrow 22.7(37) \\ 3.4 \rightarrow 25.7(04) \\ 3.5 \rightarrow 28.8(75) \\ 3.4 \rightarrow 25.7(04) \\ 3.3 \rightarrow 22.7(37) \\ 3.35 \rightarrow 24.1(95375) \end{array}$	3.3	4	B2 for trial between 3.3 and 3.4 inclusive (B1 for trial between 3 and 4 inclusive) B1 for different trial between 3.3 and 3.4 exclusive B1 (dep on at least one previous B1) for 3.3 NB trials should be evaluated to at least 1 dp truncated or rounded		
18 (a)	$36 \div (7+3+2)$ "3" × 7	21	3	M1 for 36 ÷ (7+3+2) M1 (dep) for "3" × 7 or 3 or 2 A1 cao		
(b)	$51.5 \times \frac{8.5}{100} = 4.3775$ 51.5 - 4.3775 = 47.1225	47 or 47.1 or 47.12	4	M1 for $51.5 \times \frac{8.5}{100}$ or $4.37(75)$ seen M1 (dep) for $51.5 - ``4.37(75)''$ A1 for 47 or better B1 (indep) for rounding their answer correctly to the nearest whole number or 1 or 2 d.p OR M1 for $51.5 \times \frac{100 - 8.5}{100}$ M1 for $51.5 \times ''0.915''$ or $0.515 \times ''91.5''$ A1 for 47 or better B1 (indep) for rounding their answer correct to the nearest whole number or 1 or 2 d.p		

Pap	Paper 5523/04					
	No	Working	Answer	Mark	Notes	
19	(a)		Angle in a semicircle	1	B1 oe	
	(b)	$ \begin{array}{r} 12^2 + 16^2 = 400 \\ \sqrt{400} = 20 \end{array} $	20	3	M1 for $12^2 + 16^2$ M1 for $\sqrt{144 + 256}$ A1 cao	
	(c)	$\pi \times 10^2$	314	3	M1 for $\pi \times \left(\frac{"20"}{2}\right)^2$ M1 (indep) for correct order of evaluation of $\pi \times r^2$ for any r A1 for 314 – 315 inclusive	

Pape	er 5523/04	l in the second s				
	No	Working	Answer	Mark	Notes	
20	(a)	$(1 \times 10) + (3 \times 15) + (5 \times 30) + (7 \times 35) + (9 \times 25) + (11 \times 5) = 730$ "730" ÷ 120 = 6.08333	6.08	4	M1 for use of fx with x consistent within intervals (including end points) M1 (dep) for use of midpoints M1 (dep on 1 st M1) for use of $\frac{\sum fx}{\sum f}$ A1 6.08 to 6.085	
	(b)		(10),25,55,90,115, 120	1	B1 for all correct	
	(c)		graph	2	B1 ft for 5 or 6 points plotted correctly ± 1 full (2mm) square at the end of interval dep on sensible table (condone 1 addition error) B1(dep) for points joined by curve or line segments provided no gradient is negative – ignore any part of graph outside range of their points. (SC: B1 if 5 or 6 points plotted not at end but consistent within each interval and joined)	

Paper 5523/04	Paper 5523/04						
No	Working	Answer	Mark	Notes			
(d)		72–74	2	M1 (ft dep on graph being cf) for reading from graph at 7 A1 ft ± 1 full (2 mm) square Or B2 for 72-74			
21 (a) (b) (c) (d)		$ \begin{array}{r} a^{7} \\ 15x^{3}y^{4} \\ x-1 \\ (x+3)(x-3) \end{array} $	1 2 1 1	B1 accept a^{4+3} B2 cao (B1 for two of 15, x^3 , y^4 in a product) B1 cao B1 cao			
22	80% = 220 $220 \div 80 \times 100$	275	3	M1 for recognising that 80% is equivalent to 220 M1 for 220 ÷ 80 × 100 oe A1 cao			

Paper 5523/0	Paper 5523/04						
No	Working	Answer	Mark	Notes			
23		x = 3 y = 0.5	3	M1 for coefficients of <i>x</i> or <i>y</i> the same followed by correct operation, condone one arithmetical error M1 (dep) for substituting found value in one equation A1 cao SC: B1 for one correct answer only if M's not awarded			
24		1.4×10^{10}	2	B2 for 1.4×10^{10} or 1.44×10^{10} (B1 for 14.4×10^{9} or $14400,000,000$ or $14000,000,000$ or 14×10^{9})			
25 (a)	$\tan x = \frac{1.9}{3.2}$ $x = \tan^{-1}\left(\frac{1.9}{3.2}\right) = 30.7$	30.7	3	M1 for $\tan x = \frac{1.9}{3.2}$ or $\tan \frac{1.9}{3.2}$ M1 for $\tan^{-1}\left(\frac{1.9}{3.2}\right)$ A1 for $30.6 - 30.7$			
(b)	90 + "30.7"	121	1	B1 (indep) ft for 90 + "30.7" rounded to 3 or 4 s.f			

Paper 5523/04	Paper 5523/04							
No	Working	Answer	Mark	Notes				
26	$SF = \frac{12}{9}$ $\frac{12}{9} \times 6 = 8$	2	2	M1 for $\frac{12}{9}$ or $\frac{9}{12}$ or 1.33 seen or 0.75 seen or 8 seen or $\frac{6}{9}$ or $\frac{9}{6}$ or 0.66 or 1.5 or $\frac{1}{3}$ or 3 oe seen A1 cao				

Paper 5525/0	5			
No	Working	Answer	Mark	Notes
1 (a)	$x^2 - 4x + 7x - 28$	$x^2 + 3x - 28$	2	M1 for 4 terms correct ignoring signs (e.g x^2 ,4 x ,7 x ,28) or 3 terms with correct signs (e.g x^2 ,-4 x ,7 x ,-28) A1 cao
(b)		$y^4 + 2y^2$	2	B2 cao B1 for y^4 or $2y^2$
(c)		<i>p</i> (<i>p</i> +6)	2	B2 for $p(p+6)$ or $p \times (p+6)$ (B1 for $p(ap+b)$ where a,b are numbers or $p+6$ seen on it's own, or part of an expression)
(d)		3x(2x-3y)	2	B2 (B1 for $3(2x^2 - 3xy)$ or $x(6x - 9y)$ or $3x()$)
2		question + response boxes oe	2	 1st aspect: One question with time period (eg each night); ignore other questions. 2nd aspect: Response list (at least two), not overlapping.* 3rd aspect: Some mention of units (eg hours) in either question or responses Award B2 for all three aspects, or B1 for just two aspects. * 0-1, 2-3, 4-5 is OK, but 0-1, 1-2, 2-3 is not OK.
3 (b)		reflection in $y = x$	2	B2 cao accept the word "reflected" (B1 any statement including the word "reflection")
4 (a)	5 - 3x = 2x + 25 - 2 = 2x + 3x	$\frac{3}{5}$	3	B1 for $2x + 2$ seen OR $2.5 - 1.5x = x + 1$ M1 for correct rearrangement of 4 terms A1 for $\frac{3}{5}$ oe
(b)		-3,-2,-1,0,1,2	2	B2 (B1 for 5 correct and not more than one incorrect integers)

Paper 552	/05			
No	Working	Answer	Mark	Notes
5 (a) (b)	$\frac{2}{3} \times \frac{3}{4} = \frac{6}{12}$ $1 + 2 + \frac{8}{12} + \frac{9}{12}$	$\frac{\frac{1}{2}}{4\frac{5}{12}}$	2	M1 for $\frac{6}{12}$ or $\frac{3}{6}$ or $\frac{2 \times 3}{3 \times 4}$ A1 accept 0.5 M1 for attempt to convert to fractions with common denominator e.g two fractions, denominator of 12 A1 correct conversion : $\frac{8}{12}$ and $\frac{9}{12}$, or $\frac{20}{12}$ and $\frac{33}{12}$ seen (oe) A1 cao for $4\frac{5}{12}$ OR attempts to convert to decimals: must use at least 2dp M1 0.66+0.75 (or 1.66+2.75) or 0.67+0.75 etc A1 4.41, 4.417, 4.416 or 0.41, 0.417, 0.416 or 0.42, 4.42 A1 4.416 (<i>recurring</i>)
6 (a) (ii) (b)) $x + y = 10$ and $x - y = 4$	5^{6} 5^{3} $x = 7$ $y = 3$	1 1 3	B1 accept 15625, 5^{4+2} B1 accept 125, 5^{9-6} M1 for either $x + y = 10$ or $x - y = 4$ A2 for both values correct [(A1 for one value correct) If M0, award B3 for both values correct or B2 for one value correct, otherwise B0] SC B2 for $x = 3$ or $y = 7$

Paper	Paper 5525/05						
]	No	Working	Answer	Mark	Notes		
7		$2 \times \frac{1}{2} \times 6 \times 8 \text{ or } 48$ 8 \times 9 + 6 \times 9 + 10 \times 9 or 72 + 54 + 90	264 cm ²	4	M1 attempt to find the area of one face; $\frac{1}{2} \times 6 \times 8$ or (8×9) or (6×9) or (10×9) or 72 or 54 or 90 or 24 or 48 M1 all five faces with an intention to add A1 cao numerical answer of 264 B1 (indep) cm ² with or without numerical answer		
8			$\frac{\pi a b^3}{3d} 3(c+d)^3 3\pi b c^2$	3	B3 (B1 for each one correct) Nb –B1 for each of the 4 th ,5 th ,6 th tick		
9	(a) (b)	x + 0.3 + 0.2 + x = 1 0.3 × 200	0.25 60	2	M1 for $x + 0.3 + 0.2 + x = 1$ oe, or $0.5 \div 2$ A1 oe M1 0.3×200 A1 cao Accept 60 out of 200 (in words) SC B1 for $\frac{60}{200}$		
10	(a) (b)		(-12)-4 -2 (0)8 5 points plotted accurately points joined with smooth curve	3 2	 B3 for all correct [(B1 for each one correct) B1 ± 1 full (2mm) square ft table if at least B1 awarded (all 5 points plotted) B1 ft for any smooth curve if previous B1 gained NB: curve must pass within 1 full square of the points 		
11			m=3 n=5	2	B1 for 3 B1 for 5 (B2 for $2^3 \times 5$ or $2 \times 2 \times 2 \times 5$) SC: award B1 only if $m=3$, $n=3$, for 8×5 seen		

Paper 5525/05	5			
No	Working	Answer	Mark	Notes
12	$\frac{51}{-1 - 2} = -2$	y = -2x + 5	4	M1 for clear attempt to find gradient eg fraction with -1,5 in numerator, 2,-1 in denominator A1 for -2 cao B2 ft for $y = "-2"x + 5$ oe (eg $y = \frac{-6}{3}x + 5$) (B1 for $y = mx + 5$ or , $-2x+5$ or $y = "-2"x + c$)
13 (a)		$\frac{1}{4} \text{ on LH branch}$ $\frac{2}{3} \& \frac{1}{3} \& \frac{2}{3} \text{ on RH}$ branches	2	B1 cao B1
(b)	$\frac{3}{4} \times \frac{2}{3} + \frac{1}{4} \times \frac{1}{3} = \frac{6}{12} + \frac{1}{12}$	$\frac{7}{12}$	3	M1 for $\frac{3}{4} \times \frac{2}{3}$ or $\frac{1}{4} \times \frac{1}{3}$ from their tree diagram M1 for sum of two products A1 for $\frac{7}{12}$ oe
(c)	$n = 21 \times 4 \text{ or } \frac{1}{6} : \frac{1}{4} \text{ oe}$ $\frac{1}{6} \times 84 \text{ or } 21 \times \frac{2}{3}$	14	3	M1 for either $\frac{1}{3} \times \frac{3}{4} \left(=\frac{1}{4}\right)$ or $\frac{2}{3} \times \frac{1}{4} \left(=\frac{1}{6}\right)$ from their tree diagram M1 for 21×4 (=84) or $\frac{21}{3} \times 2$ A1 for 14 cao SC: B2 for 63 seen in fraction or ratio

Pape	er 5525/05				
	No	Working	Answer	Mark	Notes
14	(a)(i)		150	2	B1 accept 150 or 210
	(ii) (b)		30	3	B1 for angle at the centre is twice the angle at the circumferenceB1 identifies angle between radius and tangent
		360 – 90 – 90 – "150" or 180 – "150"			as 90° (may be in working or on diagram) M1 360° -90-90-"150" A1 ft from (a)(i) excluding a negative answer Or B1 for 90 M1 for $2 \times (180-90-"\frac{150}{2}")$ A1 ft from (a)(i) excluding a negative answer Or B3 for 180-(a) SC: 180 - "210" can get B1 for 90° and/or B1 for "cyclic quadrilateral"
15	(a) (b)	eg $x = 0.3939$ so $100x = 39.3939$ 99x = 39 so $x = \frac{39}{99} = \frac{13}{33}$	0.2727	1 3	B1 for 2.27 recurring or 0.2727 oe or 0.273 M1 for $100x = 39.39$ M1 dep for subtraction of both sides A1 for $\frac{13}{33}$ from correct proof Alternative method M1 for 13.000 ÷ 33 M1 for remainders 31 and 13 A1 for 0.39 recurring SC:B1 for $\frac{39}{99}$

Pape	r 5525/05				
	No	Working	Answer	Mark	Notes
16	(a)	$d = kt^2$ 80 = k × 4 ²	$d = 5t^2$	3	M1 for $d = kt^2$ or $d \propto t^2$ M1 sub $d=80$ and $t=4$ into their equation
	(b)		245	1	A1 for $d = 5t^2$ oe (cao) B1 ft from (a) using "k"
	(c)	$45 = 5t^2$	3	2	M1 ft from (a) for substituting $d=45$ into their equation A1 for 3 cao (condone inclusion of -3)
17	(a)(i) (ii) (b)	$(100 - (r^2 - 16r + 64))$	(0, 9) (8, 25)	3	B1 cao B1 for $x = 8$ cao B1 for $y = 25$ cao SC: B1 for (25, 8) M1 for expansion of either set of breekets with at least 2 of 4
		LHS = $\left(\frac{100 - (x^2 - 16x + 64)}{4}\right)$ = $\left(\frac{36 + 16x - x^2}{4}\right)$ RHS = $\left(\frac{36 - 2x + 18x - x^2}{4}\right)$ = LHS			M1 for expansion of either set of brackets with at least 3 of 4 terms correct M1 for common denominator of 4 or multiplying through by 4 or reducing each numerator to a single term A1 for fully correct solution Alternative method M1 for $(5 - \frac{(x-8)}{2})(5 + \frac{(x-8)}{2})$ M1 for $(\frac{2 \times 5 - (x-8)}{2})(\frac{2 \times 5 + (x-8)}{2})$ A1 for $\frac{(18-x)(x+2)}{4}$

Pape	r 5525/05				
	No	Working	Answer	Mark	Notes
18	(a)	$\frac{810\pi}{90\pi} \text{ or } 9$ $\sqrt{9} \text{ or } 3$	12	3	M1 for $\frac{810\pi}{90\pi}$ or 9 or $\frac{1}{9}$ or 1:9 oe M1 for $\sqrt{\frac{810\pi}{90\pi}}$ or $\sqrt{9}$ or 3 or $\frac{1}{3}$ or $\sqrt{9}$: $\sqrt{1}$ oe
	(b)	3 ³ or 27 or 2700	2700π	2	A1 cao SC:B1 for answer of 36 M1 for "3" ³ or 27 or $(\sqrt{9})^3 : (\sqrt{81})^3$ oe or 9^3 or 2700– A1 cao
19	(a)(i) (ii) (iii)	$64^{-\frac{2}{3}} = \frac{1}{64^{\frac{2}{3}}}$ or $64^{-\frac{2}{3}} = (4^2)^{-1}$	$ \begin{array}{r} 1\\ 8\\ \underline{1}\\ 16\end{array} $	1 1 2	B1 caoB1 caoB1 caoM1 for knowing negative power is a reciprocal or power of $\frac{1}{3}$ root is a cube rootA1 cao for $\frac{1}{16}$
	(b)	$\sqrt{27} = \sqrt{9 \times 3}$ or $\sqrt{27} = 3\sqrt{3}$ or $\sqrt{27} = 3^{3/2}$	$\frac{5}{2}$ oe	2	M1 for $\sqrt{27} = \sqrt{9 \times 3}$ or $\sqrt{27} = 3^{3/2}$ A1 for $\frac{5}{2}$ oe (cao) Alternative method M1 for $9 \times 27 = 3^{2n}$ A1 for $\frac{5}{2}$ oe (cao)

Pape	Paper 5525/05						
	No	Working	Answer	Mark	Notes		
20	(a)(i) (ii) (b)(i) (ii)		(90, 1) (180, 0) (45, 0) (90, -3)	2 2	B1 cao could be indicated on diagramB1 cao could be indicated on diagramB1 cao could be indicated on diagramB1 cao could be indicated on diagram		
21		$\frac{1}{3}\pi x^{2}h = \frac{4}{3}\pi (2x)^{3}$ $x^{2}h = 4 \times 8x^{3}$	32 <i>x</i>	3	M1 for substitution in correct formulae M1 (dep.) for correct unsimplified expression eg $h = \frac{\frac{4}{3}\pi(2x)^{3}}{\frac{1}{3}\pi x^{2}}$ oe or $h = 8x$ oe A1 for 32x cao		
22	(a)	$\left(\overline{OM} = \right) \mathbf{a} + 2\mathbf{b} \left(\overline{ON} = \right) 3\mathbf{a} \text{ or } \frac{6}{2}\mathbf{a}$ $\left(\overline{MN} = \right) -\mathbf{a} - 2\mathbf{b} + 3\mathbf{a}$	2a-2b	2	B2 (B1 for either \overline{OM} or \overline{ON} or $-a - 2b + 3a$ SC: B1 for $2b - 2a$		
	(b)	$\left(\overline{MN}\right) = -a - 2b + 3a$ $\left(\overline{OX}\right) = 2a + b \left(\overline{OY}\right) = b + 4a$ $\left(\frac{1}{2} \overline{QR}\right) = 2a - b \text{ or } \left(\frac{1}{2} \overline{RQ}\right) = b - 2a$	$\overline{XY} = 2a$ (hence parallel)	2	B1 for either \overline{OX} or \overline{OY} or $(\frac{1}{2} \overline{QR})$ B1 for $\overline{XY} = 2a$ or $\overline{YX} = -2a$		

Pape	er 5525/06				
	No	Working	Answer	Mark	Notes
1	(a)	v - u = 5t	$\frac{v-u}{5}$	2	M1 for isolating $\pm 5t$ or $\pm t$ or for dividing through by 5 A1 oe
	(b)	$\begin{array}{l} x - 3 = 5x - 25\\ 22 = 4x \end{array}$	$\frac{v-u}{5}$ $5\frac{1}{2}$	3	M1 for $x-3=5(x-5)$ or $\frac{x}{5}-\frac{3}{5}=x-5$ M1 for isolating terms in <i>x</i> correctly from $ax+b=cx+d$
					A1 cao accept $5\frac{1}{2}, \frac{11}{2}, 5.5$
2	(a)	36÷(7+3+2) "3" × 7	21	3	M1 for 36 ÷ (7+3+2) M1 (dep) for "3" × 7 or 3 or 2 A1 cao
	(b)	$51.5 \times \frac{8.5}{100} = 4.3775$ 51.5 - 4.3775 = 47.1225	47 or 47.1 or 47.12	4	M1 for $51.5 \times \frac{8.5}{100}$ or $4.37(75)$ seen M1 (dep) for $51.5 - ``4.37(75)''$ A1 for 47 or better B1 (indep) for rounding their answer correctly to the nearest whole number or 1 or 2 d.p OR M1 for $51.5 \times \frac{100 - 8.5}{100}$ M1 for $51.5 \times ''0.915''$ or $0.515 \times ''91.5''$ A1 for 47 or better B1 (indep) for rounding their answer correct to the nearest whole number or 1 or 2 d.p

Pape	Paper 5525/06						
	No	Working	Answer	Mark	Notes		
3		$3 \rightarrow 15$ $4 \rightarrow 48$ $3.1 \rightarrow 17.3(91)$ $3.2 \rightarrow 19.9(68)$ $3.3 \rightarrow 22.7(37)$ $3.4 \rightarrow 25.7(04)$ $3.5 \rightarrow 28.8(75)$ $3.4 \rightarrow 25.7(04)$ $3.3 \rightarrow 22.7(37)$ $3.3 \rightarrow 22.7(37)$ $3.35 \rightarrow 24.1(95375)$	3.3	4	B2 for trial between 3.3 and 3.4 inclusive (B1 for trial between 3 and 4 inclusive) B1 for different trial between 3.3 and 3.4 exclusive B1 (dep on at least one previous B1) for 3.3 NB trials should be evaluated to at least 1 dp truncated or rounded		
4	(a)		Angle in a semicircle	1	B1 oe		
	(b)	$ \begin{array}{r} 12^2 + 16^2 = 400 \\ \sqrt{400} = 20 \end{array} $	20	3	M1 for $12^2 + 16^2$ M1 for $\sqrt{144 + 256}$ A1 cao		
	(c)	$\pi \times 10^2$	314	3	M1 for $\pi \times \left(\frac{"20"}{2}\right)^2$ M1 (indep) for correct order of evaluation of $\pi \times r^2$ for any r A1 for 314 – 315 inclusive		

Paper	Paper 5525/06						
	No	Working	Answer	Mark	Notes		
5	(a)	$(1 \times 10)+(3 \times 15)+(5 \times 30)+(7 \times 35)+$ $(9 \times 25)+(11 \times 5) = 730$ "730" ÷ 120 = 6.08333	6.08	4	M1 for use of fx with x consistent within intervals (including end points) M1 (dep) for use of midpoints M1 (dep on 1 st M1) for use of $\frac{\sum fx}{\sum f}$ A1 6.08 to 6.085		
	(b)		(10),25,55,90, 115,120	1	B1 for all correct		
	(c)		graph	2	B1 ft for 5 or 6 points plotted correctly ± 1 full (2mm) square at the end of interval dep on sensible table (condone 1 addition error) B1(dep) for points joined by curve or line segments provided no gradient is negative – ignore any part of graph outside range of their points. (SC: B1 if 5 or 6 points plotted not at end but consistent within each interval and joined)		
	(d)		72 – 74	2	M1 (ft dep on graph being cf) for reading from graph at 7 A1 ft ± 1 full (2 mm) square Or B2 for $72-74$		

Paper 5	525/06				
No)	Working	Answer	Mark	Notes
6 ((a)		a^7	1	B1 accept a^{4+3}
((b)		$15x^{3}y^{4}$	2	B2 cao (B1 for two of 15, x^3 , y^4 in a product)
((c)		x-1	1	B1 cao
((d)		(a + 3b)(a - 3b)	2	B2 for $(a + 3b)(a - 3b)$ (B1 for $(a \pm 3b)(a \pm 3b)$
7		80% = 220 $220 \div 80 \times 100$	275	3	M1 for recognising that 80% is equivalent to 220 M1 for $220 \div 80 \times 100$ oe A1 cao
8			x = 3 y = 0.5	3	M1 for coefficients of <i>x</i> or <i>y</i> the same followed by correct operation, condone one arithmetical error M1 (dep) for substituting found value in one equation A1 cao SC: B1 for one correct answer only if Ms not awarded
9			1.4×10^{10}	2	B2 for 1.4×10^{10} or 1.44×10^{10} (B1 for 14.4×10^{9} or $14400,000,000$ or $14000,000,000$ or 14×10^{9})

Paper 5525/0	6			
No	Working	Answer	Mark	Notes
10 (a)	$\tan x = \frac{1.9}{3.2}$ $x = \tan^{-1}\left(\frac{1.9}{3.2}\right) = 30.7$	30.7	3	M1 for $\tan x = \frac{1.9}{3.2}$ or $\tan \frac{1.9}{3.2}$ M1 for $\tan^{-1}\left(\frac{1.9}{3.2}\right)$ A1 for 30.6 - 30.7
(b)	90 + "30.7"	121	1	B1 (indep) ft for 90 + "30.7" rounded to 3 or 4 s.f
11 (a) (b)	$SF = \frac{12}{9}$ $\frac{12}{9} \times 6 = 8$ $SF = \frac{9}{12}, \frac{9}{12} \times 7 = 5.25$	2 5.25	2	M1 for $\frac{12}{9}$ or $\frac{9}{12}$ or 1.33 seen or 0.75 seen or 8 seen or $\frac{6}{9}$ or $\frac{9}{6}$ or 0.66 or 1.5 or $\frac{1}{3}$ or 3 oe seen A1 cao M1 for $\frac{BE}{7} = \frac{9}{12}$ oe A1 cao

Pape	Paper 5525/06						
	No	Working	Answer	Mark	Notes		
12	(a)	$84 = 6.7 \pi + 2 \times 6.7 + 2a$ 2a + 13.4 = 62.95 or 2a + 34.44 = 84	24.8	3	M1 for substituting correctly, π may be left M1 for correct rearrangement as far as $\pm 2a$ A1 for 24.7 – 24.8		
	(b)	$P = \pi r + 2r + 2a$ $P - 2a = \pi r + 2r$	$\frac{P-2a}{\pi+2}$	3	M1 subtracting 2 <i>a</i> from each side M1 for factorising to get $(\pi + 2)r$		
		$P - 2a = (\pi + 2)r$			A1 for $\frac{P-2a}{\pi+2}$ oe S.C $\frac{p-2a}{5.14}$ oe is M1 M1 A0		
13		Area $\triangle ABC = \frac{1}{2} \times 14 \times 8 \times \sin 106 \ (= 53.8)$	53.8	3	M1 for ½× 14×8× sin106 M1 (dep) for 56× 0.961(26) or 107.6 A1 53.8-53.9 SC 107.6 is B2		
14	(a)		4.5	1	B1 cao		
	(b)	$500 \ge 1.045^{20} = 1205.857$	1205.86	2	M1 for 500×1.045 ²⁰ A1 for 1205.85–1206 (SC:B1 for 705.85–706 no working)		

Paper 5525/00	Paper 5525/06						
No	Working	Answer	Mark	Notes			
15 (a)	$6x^{2} + 11x - 10 + 6x - 4 = 25$ $6x^{2} + 17x - 39 = 0$		3	M1 for an expression for the area involving either (3x-2)(2x+5)+2(3x-2) or $3x(3x-2)+(3x-2)(7-x)$ or $3x(2x+5)-2(7-x)$ or $(3x-2)^2 + 2(3x-2) + (3x-2)(7-x)$ where in each case at least one of 2 or 3 product terms must be correct M1 (indep) for one correct expansion involving x^2 A1 for simplification to final answer			

Paper 5525/06	Paper 5525/06						
No	Working	Answer	Mark	Notes			
15 (b)(i)	$x = \frac{-17 \pm \sqrt{17^2 - 4 \times 6 \times (-39)}}{2 \times 6}$ = $\frac{-17 \pm \sqrt{289 + 936}}{12}$ $x = +\frac{18}{12}$ or -4.33	$1.5, -\frac{13}{3}$	4	M1 for $x = \frac{-17 \pm \sqrt{17^2 - 4 \times 6 \times (-39)}}{2 \times 6}$ up to signs in b & c M1 for $x = \frac{-17 \pm \sqrt{1225}}{12}$ A1 $x = 1.5$ or -4.33 , or better OR M2 for $(3x + 13)(2x - 3)$ (M1 for $(3x \pm a)(2x \pm b)$ with $ab = \pm 39$			
(ii)	$x^{2} + \frac{17}{6}x - \frac{39}{6} = 0$ $\left(x + \frac{17}{12}\right)^{2} - \left(\frac{17}{12}\right)^{2} - \frac{39}{6} = 0$ $\left(x + \frac{17}{12}\right)^{2} = \left(\frac{17}{12}\right)^{2} + \frac{39}{6}$	8		A1 $x = 1.5$ or -4.33 , or better OR M1 for $\left(x + \frac{17}{12}\right)^2$ seen M1 $\left(x + \frac{17}{12}\right)^2 = \left(\frac{17}{12}\right)^2 + \frac{39}{6}$ A1 $x = 1.5$ or -4.33 , or better SC:M1 for answer "1.5" with no working or T & I B1 cao length = 8			

Pape	Paper 5525/06						
	No	Working	Answer	Mark	Notes		
16	(a) (b)	$P(win) = \frac{2}{5} \times \frac{3}{5} + \frac{2}{5} \times \frac{1}{5} (=\frac{8}{25})$	8 25 £4		M1 for $\frac{2}{5} \times \frac{3}{5}$ or $\frac{2}{5} \times \frac{1}{5}$ or for clearly identifying in P(R) \times P(R) + P(B) \times P(B) M1 for P(win) = " $\frac{2}{5} \times \frac{3}{5} + \frac{2}{5} \times \frac{1}{5}$ A1 for $\frac{8}{25}$, oe		
		$\frac{0}{25} \times 100 \ (=32)$ 100 \times 20 - "32" \times 50			M1 for $(\frac{8}{25} \times 100) \times 50$ or $\times 0.5$ A1 cao		

Paper 5525/0	06			
No	Working	Answer	Mark	Notes
17	Lower bound of 1200 is 1150 Upper bound of 60 is 65 1150 ÷ 65	17	4	B1 for 1150 or 1250 seen B1 for 65 or 55 seen M1 (Lower bound of load) \div (Upper bound of weight) Where 1150 \leq LB load $<$ 1200 and $60 <$ UB Weight \leq 65 A1 for 17 requires fully correct working OR B1 for 1150 or 1250 seen B1 for 65 or 55 seen M1 (upper bound of load) \div (lower bound of weight) Where 1200 $<$ UB load \leq 1250 and 55 \leq LB weight $<$ 60 A1 for 22 requires fully correct working OR M2 1200 \div 55 A1 21.8 A1 21 requires fully correct working OR M2 1200 \div 65 A1 18.4(6) A1 18 requires fully correct working
18 (a)	$3^4 x^4 y^8$	$81x^4y^8$	2	B2 for $81x^4y^8$ (B1 for 2 of 81, x^4 , y^8)
(b)	$\frac{x(x-3)}{(x-5)(x-3)}$	$\frac{x}{x-5}$	3	B1 for $x(x-3)$ B1 for $(x-5)(x-3)$ B1 cao

Paper 5525/06	Paper 5525/06						
No	Working	Answer	Mark	Notes			
19 (a) (b)	$6^{2}-2^{2} = 32$ V V A $DVA = 2 \times \sin^{-1}(\frac{2}{6})$ OR $\cos DVA = \frac{6^{2}+6^{2}-16}{2 \times 6 \times 6}$ $= \frac{56}{72}$ $DVA = \cos^{-1}\left(\frac{56}{72}\right) = 38.94$	5.66 38.9	2 3	M1 for $6^2 - 2^2 (= 32)$ A1 5.65 - 5.66 M1 sinx = $\frac{2}{6}$ oe M1 for $DVA = 2 \times \sin^{-1}(\frac{2}{6})$ A1 38.9 - 38.95 OR M1 for $(\cos DVA =) \frac{6^2 + 6^2 - 4^2}{2 \times 6 \times 6}$ M1 for $DVA = \cos^{-1}\left(\frac{56}{72}\right)$ A1 38.9 - 38.95			

Paper 5525/06	Paper 5525/06						
No	Working	Answer	Mark	Notes			
19 (c)	$AC^{2} = 2^{2} + 2^{2} - 2 \times 2 \times 2 \times \cos 120^{\circ}$ $AC = \sqrt{12}$ OR $AN = 2 \times \sin 60 = \sqrt{3}$ OR $VN = \sqrt{"32" + 1} = \sqrt{33}$ $\cos AVC = \frac{6^{2} + 6^{2} - 12}{2 \times 6 \times 6}$ $\cos AVC = \frac{60}{72}$ OR $AVC = 2 \times \sin^{-1} \frac{\sqrt{3}}{6}, \text{ using } AN$ OR $AVC = 2 \times \cos^{-1} \frac{\sqrt{33}}{6}, \text{ using } VN$	33.6	4	M1 for any valid method for AC or AN or VN where N is the midpoint of AC A1 for $AC^2 = 12$ or $AC = \sqrt{12}$ (= 3.46) or $AN = \sqrt{3}$ (=1.73)or $VN = \sqrt{33}$ (=5.74) M1 (indep) for correct method to find angle AVC A1 33.55 - 33.6			

Pape	Paper 5525/06						
	No	Working	Answer	Mark	Notes		
20	(a)	Graph translated 1 unit to the right passing through the points (-1,0), (1,2) and (2,0)		2	M1 for translation of $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ or $\begin{pmatrix} -1 \\ 0 \end{pmatrix}$ A1 for right through the 3 points, $\pm \frac{1}{4}$ sq		
	(b)	Graph stretched 2 units parallel to y-axis; passing through the points (-2,0), (0,4) and (1,0)		2	M1 for graph stretched parallel to the y-axis by scale factor 2 A1 through all 3 points; $\pm \frac{1}{4}$ sq not on grid at $x = 2$		

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481 Email <u>publications@linneydirect.com</u>

Order Code UG016720 Summer 2005

For more information on Edexcel qualifications, please visit <u>www.edexcel.org.uk/qualifications</u> Alternatively, you can contact Customer Services at <u>www.edexcel.org.uk/ask</u> or on 0870 240 9800

Edexcel Limited. Registered in England and Wales no.4496750 Registered Office: One90 High Holborn, London, WC1V 7BH