

Monday 4 March 2013 - Morning

GCSE MATHEMATICS B

J567/04 Paper 4 (Higher Tier)

Solutions

Candidates answer on the Question Paper.

OCR supplied materials: None

Other materials required:

- Geometrical instruments
- Tracing paper (optional)
- Scientific or graphical calculator

Duration: 1 hour 45 minutes

Candidate forename	Candidate surname
Centre number	Candidate number

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the boxes above. Please write clearly and in capital letters.
- Use black ink. HB pencil may be used for graphs and diagrams only.
- Answer all the questions.
- Read each question carefully. Make sure you know what you have to do before starting your answer.
- Your answers should be supported with appropriate working. Marks may be given for a correct method even if the answer is incorrect.
- Write your answer to each question in the space provided. Additional paper may be used if necessary but you must clearly show your candidate number, centre number and question number(s).
- Do not write in the bar codes.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- Use the π button on your calculator or take π to be 3.142 unless the question says otherwise.
- Your Quality of Written Communication is assessed in questions marked with an asterisk (*).
- The total number of marks for this paper is 100.
- This document consists of 24 pages. Any blank pages are indicated.

This paper has been pre modified for carrier language

© OCR 2013 [500/7923/2] DC (LEO/SW) 56625/8 OCR is an exempt Charity

Turn over

Formulae Sheet: Higher Tier

Area of trapezium = $\frac{1}{2}(a+b)h$

Volume of prism = (area of cross-section) × length

In any triangle ABC

Sine rule
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

Cosine rule
$$a^2 = b^2 + c^2 - 2bc \cos A$$

Area of triangle =
$$\frac{1}{2}$$
 ab sin C

Volume of sphere = $\frac{4}{3}\pi r^3$

Surface area of sphere = $4\pi r^2$

Volume of cone = $\frac{1}{3}\pi r^2 h$

Curved surface area of cone = πrl

The Quadratic Equation

The solutions of $ax^2 + bx + c = 0$, where $a \neq 0$, are given by

$$x = \frac{-b \pm \sqrt{(b^2 - 4ac)}}{2a}$$

PLEASE DO NOT WRITE ON THIS PAGE

1 Here is a grid with two triangles, T and A.

(a) Describe fully the single transformation that maps triangle T onto triangle A.

Rotation by 90° clockwise about (0,0)

(b) Enlarge triangle T with scale factor 3 and centre P (4, 0).

[2]

2 This is a graph for converting Pounds (£) to Danish Kroner (DKK).

(a) Use the graph to convert £6 to Danish Kroner (DKK).

(a)	48	DKK [1]
` , —		

(b) Work out the gradient of the line.

$$\frac{80-0}{10-0} = 8$$

	\checkmark	
(b)	Ŭ	[2]

(c) Explain what this gradient represents.

The	number	of	DKK	in	41	[1]
-----	--------	----	-----	----	----	-----

(d) Convert 152 DKK to Pounds.

$$\frac{152}{8} = £19$$

3 (a) Here is a list of numbers.

39 43 57 79 91 111

Write down all the numbers in this list which are prime numbers.

(a) 43, 79 [1]

(b) Write 42 as a product of its prime factors.

(b) $42 = 2 \times 3 \times 7$ [2]

(c) Find the lowest common multiple of 24 and 42.

$$\frac{24}{212}$$
 $24 = 2 \times 2 \times 2 \times 3$
 $\frac{212}{216}$ $42 = 2 \times 3 \times 7$
 $\frac{216}{1}$ 168

(c) 168 [2]

(d) A travel firm has to take 95 pupils on a visit. It has taxis which take 7 passengers and minibuses which take 15 passengers. They do not want to have any empty seats.

Work out how many taxis and minibuses they need to use.

$$4 \times 12 = \frac{60}{42}$$

 4 Here is a diagram of a barn.

(a) The front elevation of the barn is sketched below.

Calculate the length x.

Not to scale

$$x^{2} = 3.5^{2} + 4^{2}$$

$$x^{2} = 12.25 + 16$$

$$x^{2} = 28.25$$

$$x = \sqrt{28.25}$$

$$x = 5.315$$

(a) 5.3 m [3]

(b) (i) Draw the plan view of the barn on the grid below using a scale of 1 cm to 1 m.

(ii) Draw the side elevation of the barn on the grid below using a scale of 1 cm to 1 m.

[1]

Here are the first four terms of a sequence.

Rule +6

Write an expression for the *n*th term.

6n+11 [2]

6 (a) Multiply out the brackets and simplify.

12x - 11 = 4x + 9

$$5(x-3)+2(x+5)$$
= $5x-15+2x+10$
= $7x-5$

(a) 7x - 5 [2]

(b) Solve.

$$12x - 4x = +9 + 11$$

$$8x = 20$$

$$x = \frac{20}{8}$$

$$x = 2\frac{4}{8}$$

x = 2 =

(b)
$$x = \frac{2^{\frac{1}{2}}}{2}$$
 [3]

7 Golf scores are recorded on cards. The table summarises the scores for one day.

Score	Frequency	Midpoint	Freq x Midpoint
60 – 66	10	63	630
67 – 73	15	70	1050
74 – 80	14	77	1078
81 – 87	4	84	336
Calculate an actimate	43		3094

(a) Calculate an estimate of the mean score.

Estimate of mean =
$$\frac{3094}{43}$$

$$= 71.95$$

(or 72) allowed

(b) A card is picked at random.

Work out the probability that the score on the card is 73 or below.

The diagram shows a circular pond with paving stones around the edge making up a square. The length of each side of the square is 12 m.

Not to scale

Calculate the shaded area.

circle has diameter 12m so radius is 6m.

Area of circle =
$$\pi r^2 = \pi \times 6^2 = 113.1 \,\text{m}^2$$

Area of Square = $12 \times 12 = 144 \,\text{m}^2$

Shaded Area = $144 - .113.1 = 30.9 \,\text{m}^2$

30.9 n	n ²	[4	4	1
--------	----------------	----	---	---

9 (a) Calculate.

$$\sqrt{18.5^2 - 11.1^2}$$

$$= \sqrt{(18-5^2 - 11.1^2)}$$

$$= 14.8$$

(b) Here are three cards.

Work out the values written on each card. Put the values in order, smallest first.

10 (a) The equation $x^3 - x^2 - 40 = 0$ has a solution between x = 3 and x = 4.

Find this value of x correct to 1 decimal place. Show clearly your trials and the values of their outcomes.

X			
3.5	3.53-3.52-40	-9.375	TOO Small
3.8	3.83-3.82-40	0.432	Too big
3.7	$3.7^3 - 3.7^2 - 40$	-3.037	Tuo small
3.75	3.753-3.752-40	-1.328	Too Small

so round up

(a)
$$x = \frac{3 \times 8}{1 \times 10^{-10}}$$
 [3]

(b) Solve.

$$\frac{(x-5)}{3} + \frac{(3x+4)}{2} = 15$$

$$\frac{6(x-5)}{3} + \frac{6(3x+4)}{2} = 6 \times 15$$

$$2(x-5) + 3(3x+4) = 90$$

$$2x - 10 + 9x + 12 = 90$$

$$11x = 90 - 2$$

$$11x = 88$$

$$x = \frac{88}{11}$$

$$x = 8$$
(b) $x = \frac{8}{11}$

11 Here are three sketch graphs.

Write the equation of each graph in the spaces on the answer line. Choose your answers from this list.

$$y = -4x - 4x^2$$

$$y = 4x$$

$$y = 4x$$
 $y = x^3 - 4x + 4$ $y = 4x^2 - 4x$

$$y = 4x^2 - 4x$$

$$y = -4x + 4$$

$$y = x^3 - 4x$$

$$y = -4x + 4$$
 $y = x^3 - 4x$ $y = 4x - 4x^2$ $y = x + 4$

$$y = x + 4$$

Graph A is
$$y = x + 4$$

Graph B is
$$y = \chi^3 - 4\chi$$

Graph C is
$$y = \frac{-4x - 4x}{}$$
 [3]

12 (a) Write 16000 in standard form.

(b) Here are some facts about four planets.

	Mercury	Venus	Earth	Mars
Mass (kg)	3.30×10^{23}	4.87×10^{24}	5.97×10^{24}	6.42 × 10 ²³
Volume (m ³)	6.08×10^{19}	9.28×10^{20}	1.08 × 10 ²¹	1.63 × 10 ²⁰

(i) Complete this sentence, giving your answer correct to 3 significant figures.

$$\frac{9.28 \times 10^{30}}{6.08 \times 10^{19}} = 15.263$$

The volume of Venus is ______ times the volume of Mercury. [2]

(ii) Show that the Earth has the greatest density. Make all your working clear.

[3]

Mecury Venus Eastl. Mars
$$\frac{3.30 \times 10^{23}}{6.08 \times 10^{19}}$$
 $\frac{4.87 \times 10^{24}}{9.28 \times 10^{20}}$ $\frac{5.97 \times 10^{24}}{1.08 \times 10^{21}}$ $\frac{6.42 \times 10^{23}}{1.63 \times 10^{20}}$ $\frac{5.428}{1.63 \times 10^{20}}$

175 m 3

13 Make *c* the subject of this formula.

$$E = mc^2$$

$$\frac{E}{m} = c^2$$

$$\sqrt{E}_m = c$$

$$c = \frac{\sqrt{E}}{m}$$
 [2]

14 y is directly proportional to x^2 and y = 80 when x = 4.

Write a formula for y in terms of x.

$$y = K x^2$$

$$5.5$$
 $4=80$
 $80 = K \times 4^{2}$
 $80 = 16K$

$$\frac{80}{16} = k$$

$$y = 5x^2$$

15 Mr Chalmers gave a GCSE paper to all the 32 pupils in his class. The results are summarised in this cumulative frequency graph.

- (a) Use the graph to find
 - (i) the number of pupils who scored 30 marks or fewer,

(a)(i) ______[1]

(ii) the median,

(42-44) allowed

(iii) the interquartile range.

$$IQR = Q_3 - Q_1 = 55 - 35 = 20$$
(20-22)

(iii) <u>20</u> [2]

(b)* The marks for each grade for the GCSE paper are given in the table below.

Mark	Grade
0 to 9	U
10 to 24	E
25 to 40	D
41 to 54	С
55 to 69	В
70 to 84	Α
85 to 100	A*

The percentage of students nationally achieving a grade C, or better, for the paper was 55%. Mr Chalmers says that his pupils' results are better than this.

Is he correct?

Show your working clearly.

From graph 13 popils scored up to 40 So 32-13 = 19 popils scored more than 40 to obtain a Grade C or better

19 x 100 = 59.4% of the class

so yes Mr Chalmers' class results were better than the 55% achieved nationally

-	17770-1800			—
-		 		_
_				—
			-	6 1

(c) Explain why this may not be a sensible comparison.

May not be a random sample of studenty. It could be a top set.

- 16 A golfer records the distances he hits golf balls.
 - (a) The table shows the distances with Flylite balls.

Distance (d metres)	0 ≤ <i>d</i> < 150	150 ≤ <i>d</i> < 200	200 ≤ <i>d</i> < 225	225 ≤ <i>d</i> < 250	250 ≤ <i>d</i> < 300
Frequency	60	84	58	20	15

Complete the histogram for this information. The shaded values have been drawn for you.

$$\frac{58}{25} = 2.32 \qquad \frac{20}{25} = 0.8 \qquad \frac{15}{50} = 0.3$$

(b) The histogram below summarises the distances with the Arrowe balls.

Make two different comments comparing the distances he hits these two types of ball. Calculations are not necessary.

Comment 1

On	average	the	Arrowe	balls	travel	further	than
the	e Flylite	bell	\$				
	3						

Comment 2

Only	the	Arrowe	balls	are	hit	in	excess	of	
300m									

[2]

17 Here are the equations of two graphs.

$$y^2 = x^2 - 2x + 10$$

 $y = 3x + 2$

(a) Show that the point of intersection of these graphs satisfies the equation $4x^2 + 7x - 3 = 0$.

Sus for y in
$$\mathbb{O}$$

$$(3x+2)^2 = x^2 - 2x + 10$$

$$(3x+2)(3x+2) = x^2 - 2x + 10$$

$$9x^2 + 6x + 6x + 4 = x^2 - 2x + 10$$

$$9x^2 + 12x + 4 - x^2 + 2x - 10 = 0$$

$$8x^2 + 14x - 6 = 0$$

$$4x^2 + 7x - 3 = 0$$

(b) Solve the equation $4x^2 + 7x - 3 = 0$, giving your answers correct to 2 decimal places.

$$2x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$2x = \frac{-7 \pm \sqrt{7^2 - 4x 4x(-3)}}{2x4}$$

$$2x = \frac{-7 \pm \sqrt{49 + 48}}{8}$$

$$2x = \frac{-7 \pm \sqrt{97}}{8}$$

$$2x = \frac{-7 \pm \sqrt{97}}{8}$$

$$2x = \frac{-7 + \sqrt{97}}{8} = 0.3561$$

$$2x = \frac{-7 - \sqrt{97}}{8} = -2.1061$$

(b)
$$x = 0.36$$
 and $x = -2.11$ [3]

to 2 d.p. as required

[3]

18 ABC is a triangle.

Calculate angle x.

$$\frac{17}{\text{Sinx}} = \frac{24}{\text{Sin}54^{\circ}}$$

$$= \frac{5 \ln x}{17} = \frac{5 \ln 54^{\circ}}{24}$$

$$\Rightarrow Sin > C = \frac{Sin SA}{24} \times 17$$

$$= 3. \quad x = \sin^{-1}(0.57305)$$

$$\Rightarrow$$
 x = 34.963°

$$\underline{x = 34.96^{\circ}}_{\circ [3]}$$

- 19 A building project is expected to cost £4500 000. The agreed completion date is 1 January 2014. After this date, for every month it is delayed, the cost increases by 2% of the cost for the previous month.
 - (a) Calculate the cost on 1 April 2014. 1 Feb, 1 Mer, 1 Arr 3 months $4,500,000 \times 1.02^{3}$ = 4,775,436

(b) When the cost first exceeds £5500000, for how many months has the project been delayed?

$$4,500,000 \times 1.02'' = 5,485,475$$

 $4,500,000 \times 1.02'' = 5,595,184$

so delayed 11 months when cost exceeds £5,500,000

20 WXYZ is a frustum of a cone.

The base radius, AY, of the frustum is 10 m and the top radius, BZ, is $4 \, \text{m}$. $VB = 6 \, \text{m}$ and $BA = 9 \, \text{m}$.

Calculate the volume of the frustum.

Volume = Volume of big cone - Volume of little cone
=
$$\frac{1}{3}\pi \times 10^{2} \times 15 - \frac{1}{3}\pi \times 4^{2} \times 6$$

= $1570.796 - 100.531$
= 1470.265

TURN OVER FOR QUESTION 21

(Allowed 1469.5 - 1470.9)

21 ABCDEFGH is a cuboid.

Calculate the angle GAF. Look at base

$$AF = \sqrt{97} = 9.8489$$

Now consider DAFG

$$A = \frac{6}{9.8489} = x = tan^{-1} \left(\frac{6}{9.8489} \right)$$
 $= x = 31.3^{\circ}$

LGAF = 31.3° ° [5]

END OF QUESTION PAPER

Copyright Information

Contact the Copyright Team, First Floor, 9 Hills Road, Cambridge CB2 1GE.

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

© OCR 2013